期刊文献+

基本解方法解水下刚性目标三维Helmholtz外散射问题

The method of fundamental solutions for 3D Helmholtz exterior problem of underwater rigid objects
下载PDF
导出
摘要 运用基本解方法求解水下刚性目标三维Helmholtz外散射问题。研究了源点位置分布和数目对基本解方法计算结果的影响,比较了最小二乘配点法和等额配点法的计算精度。结果表明,当源点构成的形状与目标边界的形状差异大时,计算精度差,增加源点的数量可提高计算精度,运用较少的源点也可获得令人满意的精度,从而提高计算效率,但源点不宜距离目标边界过远;最小二乘配点法的计算精度较等额配点法高些。 Three-dimensional Helmholtz exterior scattering problem of underwater rigid objects is solved by using the method of fundamental solutions (MFS). Influences of position distribution and the number of source points to the computational results are studied, and computational accuracy of least square collocation method and that of equivalent collocation method is compared. The results show that computational accuracy gets worse when the distinction between the shape composed of source points and boundary shape of object is more appreciable. It can be improved by increasing the number of source points. Satisfied computational accuracy could obtain from less of the number of source points thus the computational efficiency is gained. However, the source points should not be far from the boundary of object. Computational accuracy of least square collocation method is higher than that of equivalent collocation method.
出处 《声学技术》 CSCD 2009年第3期232-234,共3页 Technical Acoustics
基金 国家部委级课题资助(4010501010102)
关键词 基本解方法 Helmholtz外散射问题 源点位置 最小二乘配点法 MFS Helmholtz exterior scattering problem positions of source points least square collocation method
  • 相关文献

参考文献1

二级参考文献15

  • 1Atkinson K E. The numerical evaluation of particular solutions for Poisson's equation[J]. IMA J Numer Anal, 1985,5: 319-338.
  • 2Boyce W E, DiPrima R C. Elementary Differential Equations and Boundary Value Problems[M]. 8th ed, New York: Wiley, 2004.
  • 3Chen C S, Lee S, Huang C S. The method of particular solutions using Chebyshev polynomial based functions [ J ]. International Journal of Numerical Methods, 2007,4(1) :15- 32.
  • 4Chen C S, Muleshkov A S, Golberg M A, et al. A mesh free approach to solving the axisymmetric Poisson's equation[J]. Numerical Methods for Partial Differential Equations, 2005,21 : 349-367.
  • 5Cheng A H D, Lafe O, Grilli S. Dual reciprocity BEM based on global interpolation functions[J]. Eng Analy Boundary Elements, 1994,13 : 303-311.
  • 6Ding J, Chen C S, Tian H. An improved method for the evaluation of particular solutions of Helmholtz-type equations by Chebyshev approximations, preprint, 2006.
  • 7Fairweather G, Karageorghis A. The method of fundamental solution for elliptic boundary value problems [J]. Advances in Comput Math. , 1998,9:69-95.
  • 8Golberg M A, Chen C S. The method of fundamental solutions for potential, Helmholtz, and diffusion problems[M]//Boundary Integral Methods.. Numerical and Mathematical Aspects. Southampton: Computational Mechanics Publications, 1998:103-176.
  • 9Golberg M A, Muleshkov A S, Chen C S, et al. Polynomial particular solutions for some partial differential operators [J]. Numerical Methods for Partial Differential Equations, 2003,19 : 112-133.
  • 10Li X, Chen C S. A mesh-free method using hyperinterpolation and fast Fourier transform for solving differential equation[J]. Engineering Analysis with Boundary Elements, 2004,28: 1 253-1 260.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部