期刊文献+

一具有非线性发生率传染病模型的稳定性和霍普夫分支(英文) 被引量:4

Stability and Hopf Bifurcation in a Epidemic Model with Non-linear Incidence Rate
原文传递
导出
摘要 在这篇文章中,我们研究了一具有非线性发生率的传染病模型.该模型经历了鞍结点分支和霍普夫分支.我们对模型的霍普夫分支进行了详细的分析,得知该霍普夫分支是超临界的.此外,我们给出了支持理论分析的数值模拟. In this paper, we investigate a epidemic model with nonlinear incidence rate β1/2I. It is shown that the model undergoes saddle-node bifurcation and Hopf bifurcation. We perform a detailed Hopf bifurcation analysis to the model, and derive that the direction of the Hopf bifurcation is supercritical. Further, the numerical simulations supporting the theoretical analysis are also given.
机构地区 中北大学理学院
出处 《生物数学学报》 CSCD 北大核心 2009年第2期207-212,共6页 Journal of Biomathematics
基金 supported by the National Science Foundation of China(60771026) the Special Scientific Research Foundation for the Subjects of Doctors in University (20060110005) the Program for New Century Excellent Talents in University (NCET050271).
关键词 非线性发生率 鞍结点分支 霍普夫分支 超临界 Nonlinear incidence rate Saddle-node bifurcation Hopf bifurcation Supercritical
  • 相关文献

参考文献4

二级参考文献10

  • 1Arditi R, Saiah H. Empiricalevidence of the role of heterogeneity in ratio-dependent consumption[J]. Ecology, 1992,73(5):1544-1551.
  • 2Arditi R, Ginzburg L R, Akcakaya H R. Variation in plankton densities among lakes:a case for ratio dependent models[J]. American Naturalists, 1991, 138(5):1287-1296.
  • 3Arditi R, Perrin N, Saiah H. Functional response and heterogeneities: An experimenttest with cladocerans[J]. OIKOS, 1991, 60(1):69-75.
  • 4Gutierrez A P. The physiological basis of ratio-dependent predator-prey theory: amethbolic pool model of Nicholson's blowflies as an example[J]. Ecology, 1992,73(5):1552-1563.
  • 5Arditi R, Ginzburg L R. Coupling in predator-prey dynamics: ratio-dependence[J]. JTheoretical Biology,1989, 139(3):311-326.
  • 6Hanski I. The functional response of predator: worries about scale[J]. TREE, 1991,6(1):141-142.
  • 7Wendi Wang, Z. Ma. Harmless Delays for Uniform Persistence[J]. J Math Anal Appl,1991, 158(1):256-268.
  • 8Hutson V. The existence of an equilibrium for permanent systems[J]. Rocky MountainJ Math, 1990,20(4):1033-1040.
  • 9Kuang Y. Delay Differential Equations with Applications in Population Dynamics[M].New York: Academic Press, 1993, 63-116.
  • 10周义仓,马知恩.一个非线性年龄结构种群模型正平衡解的全局稳定性[J].西安交通大学学报,1999,33(10):91-94. 被引量:2

共引文献12

同被引文献30

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部