摘要
在这篇文章中,我们研究了一具有非线性发生率的传染病模型.该模型经历了鞍结点分支和霍普夫分支.我们对模型的霍普夫分支进行了详细的分析,得知该霍普夫分支是超临界的.此外,我们给出了支持理论分析的数值模拟.
In this paper, we investigate a epidemic model with nonlinear incidence rate β1/2I. It is shown that the model undergoes saddle-node bifurcation and Hopf bifurcation. We perform a detailed Hopf bifurcation analysis to the model, and derive that the direction of the Hopf bifurcation is supercritical. Further, the numerical simulations supporting the theoretical analysis are also given.
出处
《生物数学学报》
CSCD
北大核心
2009年第2期207-212,共6页
Journal of Biomathematics
基金
supported by the National Science Foundation of China(60771026)
the Special Scientific Research Foundation for the Subjects of Doctors in University (20060110005)
the Program for New Century Excellent Talents in University (NCET050271).
关键词
非线性发生率
鞍结点分支
霍普夫分支
超临界
Nonlinear incidence rate
Saddle-node bifurcation
Hopf bifurcation
Supercritical