期刊文献+

矩形腔内Stokes流动混合过程追踪模拟 被引量:2

TRACE SIMULATION OF STOKES FLOW IN RECTANGULAR CAVITIES
原文传递
导出
摘要 基于涡量-速度方法建立了矩形腔上盖拖动的数学模型,采用交错网格,对腔内Stokes流动进行了有限体积数值模拟研究,得到了不同长高比的矩形腔内速度场及流函数分布.发现随着长高比的增大,中垂线的水平速度分布逐渐向无限大长高比得到解析解抛物线分布靠近.采用4阶Runge-Kutta方法对示踪剂混合过程进行前锋追踪模拟,得到了不同时刻示踪剂的混合图像.结果表明,示踪剂界面随时间呈线性增长,而且长高比越大,示踪剂界面的增长越快. Based on the vortex-velocity method, the mathematical model of the upper lid-driven rectangular cavities is estabilished. A staggered grid arrangement is used in which the dependent variables are located at different mesh points in the computational domain. The finite volume method is adopted to simulate the Stokes flow in such cavities. The distributions of the velocities and streamlines are obtained for different aspect ratios. It is found that the velocity distribution along the vertical centerline is increasingly approaching the parabolic shape with the increase of the aspect ratio, which is that of the analytical solution drived from the hypothsis of infinite aspect ratio.Adopting fourth order Runge-Kutta scheme, the front trace simulation is carried out during the course of mixing and the mixing patterns of tracers for different time are captured with result that the growth of interface increases linearly with time. In addtioton, The larger the aspect ratio is, the faster the growth of interface is.
出处 《数值计算与计算机应用》 CSCD 北大核心 2009年第2期151-160,共10页 Journal on Numerical Methods and Computer Applications
基金 聚合物成型加工工程教育部重点实验室开放课题(20061002) 广东轻工职业技术学院自然科学基金(200601).
关键词 STOKES流动 矩形腔 涡量-速度法 有限体积方法 混合 Stokes flow rectangular cavity vortex-velocity method finite volume method mixing
  • 相关文献

参考文献4

二级参考文献22

  • 1田瑞雪,葛永斌,吴文权.二维不可压流函数N-S方程的多重网格方法[J].工程热物理学报,2005,26(1):31-34. 被引量:5
  • 2林长圣.用边界元方法数值分析绕平壁上一薄平板的STOKES流动[J].上海力学,1994,15(1):67-73. 被引量:3
  • 3吴江航.数值求解不可压粘性流体定常运动的格林函数方法[J].力学学报,1984,16(5):425-433.
  • 4Burggraf O.Analytical and Numerical Studies of the Structure of Steady Separated Flows[J].Journal Fluid Mechanics,1966(24):113~151.
  • 5Pan F,Acrivos A.Steady Flows in Rectangular Cavities[J].Journal Fluid Mechanics,1967(28):643~655.
  • 6Gatski T B,Grosch C E,Rose M E.A Numerical Study of the two Dimensional Navier-Stokes Equation in Vorticity-Velocity Variables[J].Journal Computational Physics,1982(48):1~22.
  • 7Joseph D D,Sturges L.The Convergence of Biorthogonal Series for Biharmonic and Stokes Flow Edge Problems[J].Part II,SIAM,Journal Application Mathematics,1978(34):7~27.
  • 8Shankar P N.The Eddy Structure in Stokes Flow in a Cavity[J].Journal Fluid Mechanics,1993(250):371~383.
  • 9林长圣 杨桂芝.矩形空腔粘性分离流的数值分析[A].杜庆华.力学与工程应用[C].太原:山西科学技术出版社,1994.118-123.
  • 10Taneda S.Visualization of Separating Stokes Flow [J].J Phys Soc Jpn,1979,46(6):1 935~1 942.

共引文献3

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部