摘要
From a limit model in electric field obtained by letting the frequency vanish in the time-harmonic Maxwell equations, we consider a limit perturbation model in the tangential boundary trace of the curl of the electric field for localizing numerically certain small electromagnetic inhomogeneities, in a three-dimensional bounded domain. We introduce here two localization procedures resulting from the combination of this limit perturbation model with each of the following inversion processes: the Current Projection method and an Inverse Fourier method. Each localization procedure uses, as data, a finite number of boundary measurements, and is employed in the single inhomogeneity case; only the one based on an Inverse Fourier method is required in the multiple inhomogeneities case. Our localization approach is numerically suitable for the context of inhomogeneities that are not purely electric. We compare the numerical results obtained from the two localization procedures in the single inhomogeneity configuration, and describe, in various settings of multiple inhomogeneities, the results provided by the procedure based on an Inverse Fourier method.
From a limit model in electric field obtained by letting the frequency vanish in the time-harmonic Maxwell equations, we consider a limit perturbation model in the tangential boundary trace of the curl of the electric field for localizing numerically certain small electromagnetic inhomogeneities, in a three-dimensional bounded domain. We introduce here two localization procedures resulting from the combination of this limit perturbation model with each of the following inversion processes: the Current Projection method and an Inverse Fourier method. Each localization procedure uses, as data, a finite number of boundary measurements, and is employed in the single inhomogeneity case; only the one based on an Inverse Fourier method is required in the multiple inhomogeneities case. Our localization approach is numerically suitable for the context of inhomogeneities that are not purely electric. We compare the numerical results obtained from the two localization procedures in the single inhomogeneity configuration, and describe, in various settings of multiple inhomogeneities, the results provided by the procedure based on an Inverse Fourier method.
基金
supported by ACI NIM(171)from the French Ministry of Education and Scientific Research
关键词
Inverse
problems
Maxwell
equations
Electric
fields
INHOMOGENEITIES
Elec-trical
Impedance
Tomography
Current
Projection
method
FFT
Numerical
boundarymeasurements
Edge
elements
Least
square
systems
Incomplete
Modified
Gram-Schmidt
preconditioning.
Inverse problems, Maxwell equations, Electric fields, Inhomogeneities, Elec-trical Impedance Tomography, Current Projection method, FFT, Numerical boundarymeasurements, Edge elements, Least square systems, Incomplete Modified Gram-Schmidt preconditioning.