期刊文献+

A POSTERIORI ERROR ESTIMATE OF OPTIMAL CONTROL PROBLEM OF PDE WITH INTEGRAL CONSTRAINT FOR STATE 被引量:3

A POSTERIORI ERROR ESTIMATE OF OPTIMAL CONTROL PROBLEM OF PDE WITH INTEGRAL CONSTRAINT FOR STATE
原文传递
导出
摘要 In this paper, we study adaptive finite element discretization schemes for an optimal control problem governed by elliptic PDE with an integral constraint for the state. We derive the equivalent a posteriori error estimator for the finite element approximation, which particularly suits adaptive multi-meshes to capture different singularities of the control and the state. Numerical examples are presented to demonstrate the efficiency of a posteriori error estimator and to confirm the theoretical results. In this paper, we study adaptive finite element discretization schemes for an optimal control problem governed by elliptic PDE with an integral constraint for the state. We derive the equivalent a posteriori error estimator for the finite element approximation, which particularly suits adaptive multi-meshes to capture different singularities of the control and the state. Numerical examples are presented to demonstrate the efficiency of a posteriori error estimator and to confirm the theoretical results.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2009年第4期525-542,共18页 计算数学(英文)
基金 supported by the National Basic Research Program of P.R.China under the grant 2005CB321703 the NSFC under the grants:10441005 and 10571108 the Research Fund for Doctoral Program of High Education by China State Education Ministry
关键词 State-constrained optimal control problem Adaptive finite element method A posteriori error estimate. State-constrained optimal control problem, Adaptive finite element method,A posteriori error estimate.
  • 相关文献

参考文献24

  • 1V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Sythoff & Noordhoff International Publishers, Bucharest, Roumania, 1978.
  • 2R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM J. Control Optim., 39(2000), 113-132.
  • 3M. Bergounioux and K. Kunisch, On the structure of Lagrange multipliers for state-constrained optimal control problems, Syst. Control Lett., 48(2003), 169-176.
  • 4M. Bergounioux and D. Tiba, General optimality conditions for constrained convex control problems, SIAM J. Control Optim., 34:2(1996), 698-711.
  • 5J. F. Bonnas and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, NewYork, 2000.
  • 6E. Casas, Control of an elliptic problem with pointwise state constraints, SIAM J. Control Optim., 24:4(1986), 1309-1322.
  • 7E. Casas, M. Mateos and F. Troltzsch, Necessary and sufficients optimality conditions for optimization problems in function spaces and applications to control theory, ESAIM: Proceedinings, 13(2003), 18-30.
  • 8P. G. Ciarlet, The Finite Element Methods for Elliptic Problems, North-Holland, Amsterdam, 1978.
  • 9K. Deckelnick and M. Hinze, Convergence of a finite element approximation to a state-constrained elliptic control problem, SIAM J. Numerical Analysis, 45(2007), 1937-1953.
  • 10Y.Q. Huang, R. Li, W.B. Liu and N.N. Yan, Adaptive multi-mesh finite element approximation for constrained optimal control problems, Submitted to SIAM J. Control Optim.

同被引文献2

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部