期刊文献+

RECOVERY A POSTERIORI ERROR ESTIMATES FOR GENERAL CONVEX ELLIPTIC OPTIMAL CONTROL PROBLEMS SUBJECT TO POINTWISE CONTROL CONSTRAINTS 被引量:2

RECOVERY A POSTERIORI ERROR ESTIMATES FOR GENERAL CONVEX ELLIPTIC OPTIMAL CONTROL PROBLEMS SUBJECT TO POINTWISE CONTROL CONSTRAINTS
原文传递
导出
摘要 Superconvergence and recovery a posteriori error estimates of the finite element ap- proximation for general convex optimal control problems are investigated in this paper. We obtain the superconvergence properties of finite element solutions, and by using the superconvergence results we get recovery a posteriori error estimates which are asymptotically exact under some regularity conditions. Some numerical examples are provided to verify the theoretical results. Superconvergence and recovery a posteriori error estimates of the finite element ap- proximation for general convex optimal control problems are investigated in this paper. We obtain the superconvergence properties of finite element solutions, and by using the superconvergence results we get recovery a posteriori error estimates which are asymptotically exact under some regularity conditions. Some numerical examples are provided to verify the theoretical results.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2009年第4期543-560,共18页 计算数学(英文)
基金 supported by Guangdong Provincial"Zhujiang Scholar Award Project" National Science Foundation of China 10671163 the National Basic Research Program under the Grant 2005CB321703 Scientific Research Fund of Hunan Provincial Education Department 06A069 Guangxi Natural Science Foundation 0575029
关键词 General convex optimal control problems Finite element approximation Control constraints SUPERCONVERGENCE Recovery operator. General convex optimal control problems, Finite element approximation, Control constraints, Superconvergence, Recovery operator.
  • 相关文献

参考文献3

二级参考文献62

  • 1Robert A. Adams, Sobolev Spaces, Academic Press, 1978.
  • 2W. Alt, On the approximation of infinite optimisation problems with an application to optimal control problems, Appl. Math. Opt., 12 (1984), 15-27.
  • 3W. Alt and U. Mackenroth, Convergence of finite element approximations to state constrained convex parabolic boundary control problems, SIAM J. Control Optmi., 27 (1989), 718-736.
  • 4N. Arada, E. Casas and F. TrSltzsch, Error estimates for a semilinear elliptic control problem, Comput. Optim. Appl., 23:2 (2002), 201-229.
  • 5E. Casas, M. Mateos and F. TrSltzsch, Necessary and sufficient optimality conditions for optimization problems in function spaces and applications to control theory, ESIAM, Proceedings, 13 (2003), 18-30.
  • 6E. Casas and F. Troltzsch, Second order necessary and sufficient optimality conditions for opti- mization problems and applications to control theory, SIAM J. Optimiz., 13:2 (2002), 406-431.
  • 7P.G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978.
  • 8R.E. Ewing, M.-M. Liu and J. Wang, Superconvergence of mixed finite element approximations over quadrilaterals, SIAM J. Numer. Anal., 36 (1999), 772-787.
  • 9F.S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), 28-47.
  • 10T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO Anal. Numer., 13 (1979), 313-328.

共引文献16

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部