摘要
Superconvergence and recovery a posteriori error estimates of the finite element ap- proximation for general convex optimal control problems are investigated in this paper. We obtain the superconvergence properties of finite element solutions, and by using the superconvergence results we get recovery a posteriori error estimates which are asymptotically exact under some regularity conditions. Some numerical examples are provided to verify the theoretical results.
Superconvergence and recovery a posteriori error estimates of the finite element ap- proximation for general convex optimal control problems are investigated in this paper. We obtain the superconvergence properties of finite element solutions, and by using the superconvergence results we get recovery a posteriori error estimates which are asymptotically exact under some regularity conditions. Some numerical examples are provided to verify the theoretical results.
基金
supported by Guangdong Provincial"Zhujiang Scholar Award Project"
National Science Foundation of China 10671163
the National Basic Research Program under the Grant 2005CB321703
Scientific Research Fund of Hunan Provincial Education Department 06A069
Guangxi Natural Science Foundation 0575029