期刊文献+

p-Laplacian边值问题的多重正解(英文)

Multiple positive solutions for p-Laplacian boundary value problems
原文传递
导出
摘要 利用不动点指数定理及迭代技术,本文主要讨论p-Laplacian微分方程边值问题正解的存在性和非存在性,并得到了依赖于参数λ的边值问题的正解。 Using fixed index point theorems and iterative technique, this paper is concerned with the existence and nonexistence of positive solutions for the p-Laplacian differential equations. We obtained the dependence of the positive solutions on the parameter λ.
作者 王凌云
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2009年第7期77-82,共6页 Journal of Shandong University(Natural Science)
关键词 P-LAPLACIAN 正解 不动点指数定理 p-Laplacian differential equation positive solutions the fixed point index theorem
  • 相关文献

参考文献10

  • 1O’REGAND.Some general existence principles andresultsfor (p(y))′=q (t)f (t,y,y′),0<t<1[].SIAMJ Math Appl.1993
  • 2HANG,WUY.Nontrial solutions of singulartwo-point boundary value problems withsign-changing nonlinearterms[].Math Anal Ap-pl.2007
  • 3LI J,,SHENJ.Existence of positive solutions for boundary value problems withp-Laplacian[].Journal of Mathematical Analysis and Applications.2005
  • 4Guo D J,Lakshmikantham V.Nonlinear Problems in Abstract Cones[]..1988
  • 5LIU B.Positive solutions three points boundary value problems for one-dimensional p-Laplacian with intinitely manysingularities[].Applied Mathematics Letters.2004
  • 6Su H,Wei Z L,Wang B H.The Existence of positive solutions for a nonlinear four-point singular boundary value problem with a p-Laplacian operator[].Nonlinear Analysis.2007
  • 7Sun B,Ge W.Existence and iteration of positive solutions for some p-Laplacian boundary value problems[].Nonlinear Analysis.2007
  • 8Bing Liu.Positive solutions of second-order three-point boundary value problems with change of sign[].Computers and Mathematics With Applications.2004
  • 9JIANG D,GAO W J.Upper and lower method and asingular boundary value problem for the one-dimensionalp-Laplacian[].Journal of Mathematical Analysis and Applications.2000
  • 10X.He,W.Ge.Twin positive solutions for the one-dimensional p-Laplacian boundary value problems[].Nonlinear Analysis.2004

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部