摘要
A Latin squares of order v with ni missing sub-Latin squares (holes) of order hi (1 〈= i 〈 k), which are disjoint and spanning (i.e. ∑k i=l1 nihi = v), is called a partitioned incomplete Latin squares and denoted by PILS. The type of PILS is defined by (h1n1 h2n2…hknk ). If any two PILS inaset of t PILS of type T are orthogonal, then we denote the set by t-HMOLS(T). It has been proved that 3-HMOLS(2n31) exist for n ≥6 with 11 possible exceptions. In this paper, we investigate the existence of 3-HMOLS(2nu1) with u ≥ 4, and prove that 3-HMOLS(2~u1) exist if n ≥ 54 and n ≥7/4u + 7.
A Latin squares of order v with ni missing sub-Latin squares (holes) of order hi (1 〈= i 〈 k), which are disjoint and spanning (i.e. ∑k i=l1 nihi = v), is called a partitioned incomplete Latin squares and denoted by PILS. The type of PILS is defined by (h1n1 h2n2…hknk ). If any two PILS inaset of t PILS of type T are orthogonal, then we denote the set by t-HMOLS(T). It has been proved that 3-HMOLS(2n31) exist for n ≥6 with 11 possible exceptions. In this paper, we investigate the existence of 3-HMOLS(2nu1) with u ≥ 4, and prove that 3-HMOLS(2~u1) exist if n ≥ 54 and n ≥7/4u + 7.
基金
Research supported by National Natural Science Foundation of China under Grant No. 60873267
Zhejiang Provincial Natural Science Foundation of China under Grant No. Y607026
sponsored by K. C. Wong Magna Fund at Ningbo University