期刊文献+

Existence of Three HMOLS of Type 2~nu^1

Existence of Three HMOLS of Type 2~nu^1
原文传递
导出
摘要 A Latin squares of order v with ni missing sub-Latin squares (holes) of order hi (1 〈= i 〈 k), which are disjoint and spanning (i.e. ∑k i=l1 nihi = v), is called a partitioned incomplete Latin squares and denoted by PILS. The type of PILS is defined by (h1n1 h2n2…hknk ). If any two PILS inaset of t PILS of type T are orthogonal, then we denote the set by t-HMOLS(T). It has been proved that 3-HMOLS(2n31) exist for n ≥6 with 11 possible exceptions. In this paper, we investigate the existence of 3-HMOLS(2nu1) with u ≥ 4, and prove that 3-HMOLS(2~u1) exist if n ≥ 54 and n ≥7/4u + 7. A Latin squares of order v with ni missing sub-Latin squares (holes) of order hi (1 〈= i 〈 k), which are disjoint and spanning (i.e. ∑k i=l1 nihi = v), is called a partitioned incomplete Latin squares and denoted by PILS. The type of PILS is defined by (h1n1 h2n2…hknk ). If any two PILS inaset of t PILS of type T are orthogonal, then we denote the set by t-HMOLS(T). It has been proved that 3-HMOLS(2n31) exist for n ≥6 with 11 possible exceptions. In this paper, we investigate the existence of 3-HMOLS(2nu1) with u ≥ 4, and prove that 3-HMOLS(2~u1) exist if n ≥ 54 and n ≥7/4u + 7.
作者 Yun Qing XU
机构地区 Mathematics Department
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第8期1325-1336,共12页 数学学报(英文版)
基金 Research supported by National Natural Science Foundation of China under Grant No. 60873267 Zhejiang Provincial Natural Science Foundation of China under Grant No. Y607026 sponsored by K. C. Wong Magna Fund at Ningbo University
关键词 holey Latin square mutually orthogonal Latin square group divisible design holey Latin square, mutually orthogonal Latin square, group divisible design
  • 相关文献

参考文献1

二级参考文献7

  • 1Xu Yunqing,JCMCC,1997年,24卷,129页
  • 2Bennet F E,Discrete Math,1996年,158卷,11页
  • 3Xu Yunqing,J Statist Plan Inference,1996年,51卷,293页
  • 4Xu Yunqing,J Cobbin Designs,1995年,3卷,2期,115页
  • 5Zhu Lie,高校应用数学学报,1992年,7卷,321页
  • 6Mullin R C,Utilitas Mathematica,1985年,27卷,157页
  • 7Brouwer A E,Discrete Math,1982年,39卷,263页

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部