期刊文献+

The Affine Complete Hypersurfaces of Constant Gauss-Kronecker Curvature 被引量:1

The Affine Complete Hypersurfaces of Constant Gauss-Kronecker Curvature
原文传递
导出
摘要 Given a bounded convex domain Ω with C∞ boundary and a function ψ∈C∞(δΩ), Li-Simon-Chen can construct an Euclidean complete and W-complete convex hypersurface M with constant affine Gauss-Kronecker curvature, and they guess the M is also affine complete. In this paper, we give a confirmation answer. Given a bounded convex domain Ω with C∞ boundary and a function ψ∈C∞(δΩ), Li-Simon-Chen can construct an Euclidean complete and W-complete convex hypersurface M with constant affine Gauss-Kronecker curvature, and they guess the M is also affine complete. In this paper, we give a confirmation answer.
作者 Bao Fu WANG
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第8期1353-1362,共10页 数学学报(英文版)
基金 Supported by National Natural Science Foundation (No. 10771146) RFDP
关键词 Gauss-Kronecker curvature affine completeness Gauss-Kronecker curvature, affine completeness
  • 相关文献

参考文献8

  • 1Li, A. M., Simon, U. Zhao, G. S.: Global Affine Differential Geometry of Hypersurfaces, Walter de Gruytrt, Berlin-New York, 1993.
  • 2Simon, U., Schwenk-Scheilmidt, A., Viesel, H.: Introduction to the Affine Differdntial Geometry of Hypersurfaces, Lecture Notes Science University, Tokyo, 1991, ISBN:3798315299.
  • 3Li, A. M.: Spacelike hypersurfaces with constant Gauss-Kronecker curvature in Minkowski space. Arch. Math., 64, 534-551 (1995).
  • 4Li, A. M., Simon, U., Chen, B.: A two step Monge-Ampere Procedure for solving a fourth order PDE for affine hypersurfaces with constant curvature. J. Reine Angew. Math., 487, 179-200 (1997).
  • 5Wang, B. F., Li, A. M.: Euclidean complete hypersurfaces with negative constant affine mean curvature. Result. Math., 52, 383-398 (2008).
  • 6Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equation, 1., Monge-Ampere equation. Comm. pure Apple. Math., 37, 369-402 (1984).
  • 7Wang, C. P.: Centroaffine minimal hypersurfaces in Rn+1. Geometriae Dedicata, 51, 63-74 (1994).
  • 8Li, A. M., Li, H. Z., Simon, U.: Centroaffine Bernstein problems. Differential Geom. Appl., 20, 331-356 (2004).

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部