期刊文献+

基于蚁群规则挖掘算法的多特征遥感数据分类 被引量:1

Study on the multi-feature remote sensing data classification based on ACO rule mining algorithm
原文传递
导出
摘要 蚁群算法作为一种新型的智能优化算法,已经成功应用在许多领域,然而应用蚁群优化算法进行遥感数据处理则是一个新的研究热点。蚁群规则挖掘算法是基于分类规则挖掘进行分类,能够处理多特征的数据。因此,论文将蚁群规则挖掘算法应用到多特征遥感数据分类处理中,并采用北京地区的Landsat TM和Envisat ASAR数据作为实验数据,对选择的遥感数据进行了多特征分类实验。实验结果分别与最大似然分类法、C4.5方法进行对比,分析表明:1)蚁群规则挖掘算法是一种无参数分类的智能方法,具有很好的鲁棒性,2)能够挖掘较简单的分类规则;3)能够充分利用多源遥感数据等。它可以充分利用多特征数据进行土地覆盖分类,从而能够提高分类的效率。 Remote sensing data classification is an important source of land cover map, and remote sensing research focusing on image classification has long attracted the attention of the remote sensing community. For several decades the remote sensing data classification technology has gained a great achievement, but with the more multi-source and multi-dimensional data, the conventional remote sensing data classification methods based on sta- tistical theory have some weaknesses. For instance, when the remote sensing data does not obey the pre-assumption of normal distribution, the classification result using Maximum Likelihood Classifier (MLC) will deviate from the actual situation, and the classification accuracy will not be satisfied. So in recent years, many artificial intelligence techniques were applied to remote sensing data classification, aiming to reduce the undesired limitations of the conventional classification methods. Ant colony algorithm as a novel intelligent optimization algorithm has been used successfully in many fields, but its application in remote sensing data processing is a new research topic. Due to the ant colony rule mining algorithm based on classification rule mining, it can process multi-feature data. This paper introduces the theory and flow of application of ant colony rule mining algorithm in multi-feature remote sensing data classification. This paper selected Landsat TM and Envisat ASAR located in Beijing area as experiment data for land cover classification based on ant colony rule mining algorithm, and the classification results are compared with MLC and C4.5. The experimental results indicate that the advantages of ACO used in multi-feature remote sensing data classification can be summarized as follows: (1) It does not assume an implicit assumption for processing dataset; (2) Contextual information can be taken into account (3) It has strong robustness; (4) It can construct simple classification rules; (5) It can take advantage of multi-source dataset for land cover classification. So the ant colony rule mining algorithm has provided a new approach for multi-feature remote sensing data classification.
作者 戴芹 刘建波
出处 《地理研究》 CSCD 北大核心 2009年第4期1136-1145,共10页 Geographical Research
基金 中国科学院"优秀博士学位论文 院长奖获得者科研启动专项资金" 国家自然科学基金项目(40701105)
关键词 蚁群规则挖掘 多特征数据 遥感数据分类 Ant colony rule mining algorithm multi-feature data remote sensing data classification
  • 相关文献

参考文献6

二级参考文献51

共引文献775

同被引文献21

  • 1刘小平,黎夏,叶嘉安,何晋强,陶嘉.利用蚁群智能挖掘地理元胞自动机的转换规则[J].中国科学(D辑),2007,37(6):824-834. 被引量:56
  • 2广东省防汛防旱防风总指挥部,广东省水利厅.广东水旱风灾害[M].广州:暨南大学出版社,1996.
  • 3HOWARD S W. Flood hazard and management: a UK perspective [J]. Philosophical Transactions of The Royal Society A, 2006, 364:2135 -2145.
  • 4TAWATCHAI T, MOHAMMED F K. Flood hazard and risk analysis in the southwest region of Bangladesh [ J ]. Hydrological Process, 2005,19:2055 - 2069.
  • 5ZOU Q, ZHOU J Z, ZHOU C, et al. Comprehensive flood risk assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP. Stoch. Environ Res RiskAssess. 2013, 27:525 -546.
  • 6TINGSANCHALI T, KARIM F. Flood hazard assessment and risk-based zoning of a tropical flood plain : case study of the Yom River, Thailand [J]. Hydrol Sci J,2010,55 (2) :145 - 161.
  • 7KUBALC, HAASE D, MEYER V, et al. Integrated ur- ban flood risk assessment-adapting a multi criteria ap- proach to a city [ J ]. Nat Hazards Earth Syst Sci, 2009, 9 : 1881 - 1895.
  • 8LI LF, WANG J F, LEUNG H, et al. Assessment of cat- astrophic risk using bayesian network constructed from domain knowledge and spatial data [ J ]. Risk Analysis, 2010,30(7) :1157 - 1175.
  • 9COLORNI A, DORIGO M, MANIEZZO V, et al. Dis- tributed optimization by ant colonies [ C ]//Proceedingsof European Conference on Artificial Life. Paris, 1991: 134 - 142.
  • 10PAREPINELLI R S, LOPES H S, FREITAS A A. Data mining with an Ant Colony Optimization algorithm [ J ]. IEEE Transaction in Evolutionary Computation, 2002, 6 (4) :321 -332.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部