期刊文献+

一种基于自适应粒子滤波的目标跟踪方法 被引量:2

A Object Tracking Method Based on Adaptive Particle Filter
下载PDF
导出
摘要 提出一种利用最近的目标轨迹信息自适应调整运动模型的粒子滤波方法,根据背景地形或道路信息建立若干目标轨迹模式,然后利用目标轨迹模式将最近的目标轨迹进行分类,通过与当前目标最近段轨迹匹配的目标轨迹类,获得当前目标在下一时刻状态后验概率分布对应的粒子。实验结果表明该方法具有较强的鲁棒性,能有效实现复杂场景下的目标跟踪。 A particle filter method whose moving model is adaptively adjusted using the information of recent object trajectories is proposed. Some object trajectory patterns are built based on the information of background terrain and road, then the recent object trajectories can be classified based on the built object trajectory patterns. The particles of current object' s next time posterior probability distribution can be obtained from a certain object trajectories class which matchs the current object' s recent part of trajectory. Experimental results show that the proposed method in this paper is robust and can effectively realize object tracking under eomplex background.
出处 《信号处理》 CSCD 北大核心 2009年第7期1066-1069,共4页 Journal of Signal Processing
关键词 粒子滤波 目标跟踪 运动模型 自适应 Particle Filter Object Tracking Moving Model Adaptive
  • 相关文献

参考文献8

  • 1M.S.Arulampalam,S.Maskell,N.Gordon,T.Clapp.A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
  • 2J.H.Kotecha,P.M.Djuric.Gaussian Particle Filtering[J].IEEE Transactions On Signal Processing,2003,51(10):2592-2601.
  • 3J.H.Kotecha,P.M.Djuric.Gaussian Sum Particle Filtering[J].IEEE Transactions on Signal Processing,2003,51(10):2602-2612.
  • 4Xinyu Xu,Baoxin Li.Adaptive Rao-Blackwellized Particle Filter and Its Evaluation for Tracking in Surveillance[J].IEEE Transactions on Image Processing,2007,16(3):838-849.
  • 5程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 6F.Van Der Heijden.Consistency Checks for Particle Filters[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(1):140-145.
  • 7Martin Ulmke,Wolfgang Koch.Road-Map Assisted Ground Moving Target Tracking[J].IEEE Transactions on Aerospace and Electronic Systems,2006,42(4):1264-1274.
  • 8A.Doucet,S.Godsill,C.Andrieu.On Sequential Monte Carlo Sampling Methods for Bayesian Filtering[J].Statist.Comput.,2000,10(3):197-208.

二级参考文献11

共引文献72

同被引文献18

  • 1宁晓菊,梁军利.基于UKF的高斯和滤波算法[J].计算机仿真,2006,23(12):100-103. 被引量:10
  • 2吕学斌,周群彪,陈正茂,赵明华.一种改进粒子滤波器在雷达目标跟踪中的应用[J].系统仿真学报,2007,19(9):2097-2100. 被引量:8
  • 3Gordon N,Salmond D,Smith B A F.Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J].IEE Proceedings F:Radar Signal Process, 1993,140: 107-113.
  • 4Arulampalam M S, Maskell S, Gordon N, et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Trans on signal Processing,2002,50(2) : 174-188.
  • 5Cappe'O,Godsill S J,Moulines E.An overview of existing methods and recent advances in sequential Monte Carlo[J].Proceedings of the IEEE, 2007,95 ( 5 ) : 899-924.
  • 6Schon T, Gustafsson F, Nordlund EMarginalized particle filters for mixed linear/nonlinear state-space models[J].IEEE Trans on Signal Processing, 2005,53 (7) : 2279-2288.
  • 7Gustafsson F, Gunnarsson F, Forssell N, et al.Particle filters for positioning navigation and tracking[J].IEEE Trans on Signal Processing, 2002,50 (2) : 425-437.
  • 8Li X R.Jilkov V P.Survey of maneuvering target tracking, Part I:dynamic models[J].IEEE Trans on Aerospace and Electronic Systems, 2003,39(4) : 1333-1363.
  • 9Li X R,Jilkov V P.A survey of maneuvering target tracking, Part III:measurement models[C]//Proceedings of the SPIE Conference on Signal and Data Processing of Small Targets, San Diego, CA, 2001 : 423-446.
  • 10王亚利,林家骏.基于粒子滤波的机动目标跟踪[J].计算机工程与应用,2007,43(34):61-64. 被引量:5

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部