期刊文献+

基于免疫RBF网络阵列的雷达信号分类识别方法

A Novel Recognition Method of Radar Signals Based on immune RBF Network Array
下载PDF
导出
摘要 本文提出了基于免疫算法设计的径向基函数(RBF)网络阵列实现对雷达信号体制和用途的分类识别。同单个神经网络相比,这种方法克服了识别类型较多时存在的扩充、修改、维护等难点。在RBF子网络的训练中,采用结合记忆机制的递阶免疫算法确定RBF网络的隐层参数,有效折衷了系统性能和运算量之间的矛盾。实验结果表明,采用这种方法设计的雷达信号识别系统达到了很高的性能。 In this paper,radial basis function (RBF) network array designed by immune algorithm is proposed to the recognition of type and application of intercepted radar signals. Compared to single neural network, the method overcomes the difficulties of expansion, modification and maintenance when there are a large number of radar styles. In the training of RBF sub-network, hierarchical immune algorithm combined with memory mechanism is used to determine RBF hidden layer parameters ,which effectively compromise between performance and computation load. Experimental results demonstrate that the recognition system designed by the proposed method has reached very high performance.
出处 《信号处理》 CSCD 北大核心 2009年第7期1146-1149,共4页 Journal of Signal Processing
基金 上海-NRC-IRAP合作计划(No.06SN07112)
关键词 雷达信号识别 径向基函数网络 神经网络阵列 递阶免疫算法 radar signal recognition radial basis function network neural network array hierarchical immune algorithm
  • 相关文献

参考文献6

  • 1Sergei A.Vakin,Lev N.Shustov.Fundamentals of Electronic Warfare[M].Artech House,2001.
  • 2Vitaly Schetinin.A Learning Algorithm for Evolving Cascade Neural Networks[J].Neural Processing Letters,2003,17(1):21-31.
  • 3岳喜才,伍晓宇,郑崇勋,叶大田.一种大类别数分类的神经网络方法[J].计算机研究与发展,2000,37(3):278-283. 被引量:7
  • 4Huang G.B.,Saratchandran P,Sundararajan N.A Generalized Growing and Pruning RBF (GGAP-RBF) Neural Network for Function Approximation[J].IEEE Tran.on Neural Networks,2005,16(1):57-67.
  • 5S.Chen,X.Hong and C.J.Harris.An Orthogonal Forward Regression Technique for Sparse Kernel Density Estimation[J].Neurocomputing,2008,71(4):931-943.
  • 6石红瑞,刘勇,刘宝坤,李光泉.基于混合递阶遗传算法的径向基神经网络学习算法及其应用[J].控制理论与应用,2002,19(4):627-630. 被引量:27

二级参考文献18

  • 1Moody J, Darken C. Fast learning in networks of locally-tuned pro cessing units [J]. Neural Computation, 1989,2(2):281-284
  • 2Lippmann R P. Pattern classification using neural networks [J]. IEEE Communication Magazing, 1989,27( 11 ): 47 - 64
  • 3Chen S, Cowan C F N, Grant P M. Orthogonal least square algo rithm for radial basis function networks [ J]. IEEE Trans. on Neural Networks, 1991,2(2) :302 - 309
  • 4Chen S, Grant P M, Cown C F N. Orthogonal least-squares algorithm for training multioutput radial basis function networks [ J ]. IEEE Proceedings-F, 1992,139(6) :378 - 384
  • 5Chen S, Billings S A, Grant P M. Recursive hybrid algorithm for non-linear system identification using radial basis function networks[J]. Int. J. Control,1992,55(5):1051 - 1070
  • 6Platt J. A resource-allocating network for function interpolation [J]. Neural Computation, 1991,3(2) :213 - 225
  • 7Kadirkamnathan V, Niranjan M. A function estimation approach to sequential learning with neural network [J]. Neural Computation, 1993,5(6) :954 - 975
  • 8Lu Yingwei, Sundarajan N, Saratchandran P. A sequential learning scheme for function approximation using minimal radial basis function neural networks [J]. Neural Network, 1997,9(2):461-478
  • 9Lu Yingwei, Sundarajan N, Saratchandran P. Performance evaluation ora sequential minimal radial basis function (RBF) neural network learning algorithm [ J ]. IEEE Trans. on Neural Networks, 1998, 9 (2) :308 - 318
  • 10Man K F, Tang K S, Kwong S, et al. Genetic Algorithms for Con trol and Signal Processing [M]. London: Springer-Verlag, 1997

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部