期刊文献+

Injected spectrum for TeV γ-ray emission from the galactic center

Injected spectrum for TeV γ-ray emission from the galactic center
下载PDF
导出
摘要 The detection of very high energy γ-ray emission from the Galactic center has been reported by four independent groups. One of these γ-ray sources, the 10 TeV -γ-ray radiation reported by HESS, has been suggested as having a hadronic origin when relativistic protons are injected into and interact with the dense ambient gas. Assuming that such relativistic protons required by the hadronic model come from the tidal disruption of a star by the massive black hole of Sgr A*, we explore the spectrum of the relativis- tic protons. In the calculations, we investigate cases where different types of stars are tidally disrupted by the black hole of Sgr A*, and we consider that different diffusion mechanisms are used for the propagation of protons. The initial energy distribution of the injected spectrum of protons is assumed to follow a power-law with an exponential cut-off, and we derive the different indices of the injected spectra for the tidal disruption of different types of stars. For the best fit to the spectrum of photons detected by HESS, the spectral index of the injected relativistic protons is about 2.05 when a red giant is tidally disrupted by the black hole of Sgr A* and the diffusion mechanism is the Effective Confinement of Protons. The detection of very high energy γ-ray emission from the Galactic center has been reported by four independent groups. One of these γ-ray sources, the 10 TeV -γ-ray radiation reported by HESS, has been suggested as having a hadronic origin when relativistic protons are injected into and interact with the dense ambient gas. Assuming that such relativistic protons required by the hadronic model come from the tidal disruption of a star by the massive black hole of Sgr A*, we explore the spectrum of the relativis- tic protons. In the calculations, we investigate cases where different types of stars are tidally disrupted by the black hole of Sgr A*, and we consider that different diffusion mechanisms are used for the propagation of protons. The initial energy distribution of the injected spectrum of protons is assumed to follow a power-law with an exponential cut-off, and we derive the different indices of the injected spectra for the tidal disruption of different types of stars. For the best fit to the spectrum of photons detected by HESS, the spectral index of the injected relativistic protons is about 2.05 when a red giant is tidally disrupted by the black hole of Sgr A* and the diffusion mechanism is the Effective Confinement of Protons.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2009年第7期761-769,共9页 天文和天体物理学研究(英文版)
基金 funded by the National Natural Science Foundation of China (Grant Nos. 10873015, 10778716, 10573021, 10778064, 10673001 and 10433010) the National Basic Research Program of China (Grant 2009CB824800)
关键词 black hole physics - galaxies jets - Galaxy center black hole physics - galaxies jets - Galaxy center
  • 相关文献

参考文献1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部