期刊文献+

基于MLP-ANN神经网络的河流泥沙输移对气候变化的响应 被引量:2

Response for the Climate Changes to the Transportation of Sediment in Longchuanjiang River Based on MLP-ANN Model
下载PDF
导出
摘要 运用MLP-ANN神经网络方法,对金沙江中游一级支流龙川江的河流泥沙输移状况与气候变化之间的响应关系进行了研究。结果表明:(1)龙川江河流泥沙输移对温度、降雨量、降雨强度和径流量等气候因子响应直接,而对降雨频率、蒸发量和湿度的改变没有明显响应;(2)当不考虑径流因子时,MLP-ANN模型对泥沙输移的拟合有一个月的时滞效应,而考虑径流因子时,则没有时滞效应;(3)在1993年以后,河流泥沙输移对气候变化的响应出现明显偏移,显示有其它因素对龙川江的河流泥沙输移产生了强烈干扰。 The MLP- ANN model was applied to research the response for the climate changes to the transportation of Sediment in Longchuanjiang River. The results showing: ( 1 ) The temperature, rainfall, intensity of storm and the water discharge have a directly relationship with the Sediment whereas the frequency of storm, evaporation and the humidity have no response explicitly ; (2) Without delay effect appears to the transportation of Sediment model while considering the water discharge, otherwise, A month delay effect appears ; (3) The response for the climate changes to the transportation of Sediment in Longchuanjiang River has a obvious deviation since1990, it shows that the other factors should disturb this response mechanism strongly except the climate.
出处 《环境科学与管理》 CAS 2009年第4期16-19,36,共5页 Environmental Science and Management
基金 国家"973"项目专题(2003CB415105-6) 云南省应用基础研究计划面上项目(2006D0080M)
关键词 MLP-ANN 泥沙 龙川江 气候变化 MLP - ANN Sediment Longchuanjiang river climate change
  • 相关文献

参考文献8

  • 1Chiew,F.H.S.,Whetton,P.H.,McMahon,T.A.,et al.Simulation of the Impacts of Climate-Change on Runoff and Soil-Moisture in Australian Catchments[J].Journal of Hydrology,1995,167(1-4):121-147.
  • 2Menzel,L.,Burger,G.Climate change acenarios and runoff response in the Mulch catchment(Southern Elbe,Germany)[J].Journal of Hydrology,2002,267(1-2),53 -64.
  • 3Xu,J.X.The water fluxes of the Yellow River to the sea in the past 50 years,in response to climate change and human activities[J].Environmental Management,2005,35 (5),620-631.
  • 4Zhang,Q.,Jiang,T.,Gemmer,M.,et al.Precipitation,temperature and runoff analysis from 1950 to 2002 in the Yangtze basin,China[J].Hydrological Science Journal,2005,50(1),65 -79.
  • 5戴会超,何文社,曹叔尤.基于误差修正的BP神经网络模型在河道洪水预报中的应用[J].水电能源科学,2006,24(1):69-71. 被引量:8
  • 6K.C.Luk,J.E.Ball,A.Sharma.A study of optimal model lag and spatial inputs to arti? cial neural network for rainfall forecasting[J].Journal of Hydrology,2000,227(1):56-65.
  • 7Zhu,Y.M.,Lu,X.X.,Zhon,Y.,Sediment flux modeling with Artificial Neural Network:An example of the Longchuanjiang River in the Upper Yangtze Catchment[J].Geomorphology,doi:10.1016/j.geomorph.2006.07.010.
  • 8Murat Alp,H.Kerem Cigizoglu.Sediment load simulation by two arti? cial neural network methods using hydrometeorological data[J].Environmental Modelling & Software,2007,22:2-13.

二级参考文献4

  • 1方卫华.人工神经网络模型用于水电能源科学的问题探讨[J].水电能源科学,2004,22(3):71-74. 被引量:9
  • 2Hecht-Nielsen R. Application of Counter Propagation Networks[J]. Neural Networks,1988(1) :131-139.
  • 3Hecht-Nielsen R. Theory of Backpropagation Neural Networks [M].[S. L.]: Proc. IJCNN-89,1989.
  • 4See L, Openshaw S. Applying Soft Computing Approaches to River Level Forecasting [J]. Hydrological Sciences-journal-des Sciences Hydrologiques,1999,44(5) : 763-778.

共引文献7

同被引文献62

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部