期刊文献+

关于投入产出表中中间投入流量矩阵的调整方法 被引量:1

The Adjust Method About Central Input Flow Matrix in Input-output Table
原文传递
导出
摘要 本文给出在一定条件下利用求解m×n维空间中两点距离最短的条件极值方法来调整中间投入流量矩阵,方法简便实用,易于操作,具有一定的实际应用价值. This paper gives out the method to adjust middle input flow matrix which using to find conditioned extreme value about minimum distance between two points in m * n dimension space. It, is handy and practical. It is easy to be operated and has some actual applied value.
作者 崔玉泉
出处 《数学的实践与认识》 CSCD 1998年第3期232-238,共7页 Mathematics in Practice and Theory
  • 相关文献

同被引文献13

  • 1Friedlander D. A technique for estimating a contingency table given the marginal totals and some supplementary data[J]. Journal of Royal Statistical Society. Series A. 1961. 123(3): 412-420.
  • 2Harrigan F, Buchanan I. A quadratic programming approach to input-output estimation and simulation[J]. Journal of Regional Science, 1984, 24(3): 339-358.
  • 3Stone R, Brown A. A Computable Model of Economic Growth[M]. A Program for Growth Series, Vol. 1 London: Chapman and Hall, 1962.
  • 4Schneider M H, Zenios S A. A comparative study of algorithms for matrix balancing[J]. Operations Research, 1990, 38(3):439-455.
  • 5Jaynes E T. Information theory and statistical mechanics[J]. Physics Review, 1957, 106:620-630.
  • 6Jaynes E T. Information Theory and Statistical mechanics Ⅱ[J]. Physics Review, 1957. 108:171-190.
  • 7Kullback S. Information Theory and Statistics[ M]. New York: John Wiley, 1959.
  • 8Golan A, Judge G, Robinson S. Recovering information from incomplete or partial multisectoral economic data[J]. Review of Economics and Statistics, 1994, 76:541-549.
  • 9Golan A, Judge G, Miller D. Maximum Entropy Econometrics: Robust Estimation with Limited Data[M]. Chichester: John Wiley& Sons, 1996.
  • 10Fang S C, Rajasekera J R, Tsao H S J. Entropy Optimization and Mathematical Programming[M]. Norwell, MA: Kluwer Academic Publishers, 1997.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部