期刊文献+

基于改进负选择算法的异常检测

Anomaly Detection Using Modified Negative Selection Algorithm
下载PDF
导出
摘要 为实现用较少数目的检测器覆盖较大的非自体空间,提出一种基于渐增式矩形检测器的负选择算法。该方法采用D∞距离匹配原则,检测器在每一维的方向上呈指数形式逐渐增长,直至与自体空间相匹配,从而使得产生的每个检测器在空间的每一维都延伸至最大,能够产生足够优秀的检测器集覆盖非自体空间。通过对检测器的合并,消除重叠等简化处理,实现了检测器的数目和大小的双重优化。对不同几何形状的数据集合进行了仿真。实验结果表明,该算法在对非自体空间的覆盖和检测率的提高方面有显著的效果。 In order to occupy more coverage of the non- self space using fewer detectors, a new negative selection algorithm based on incremental rectangle detectors is proposed. In this scheme, the D∞ distance is employed to meassure the self and nonself space coverage. The sizes of the detectors are increased exponentially in each dimension until they overlap with the self samples. The generation strategy of detectors ensures that every detector is extended to its maximum size in each dimension. The number and size of these detectors are optimized by diminating the redundancy among the existing detectors. Consequently, the detection efficiency of individual detector is increased. Some datasets of different geometry shapes are applied to examine the proposed NSA. Experimental results show that the proposed algorithm has remarkable advantages in both ooverage of anomaly state space and detection rate.
作者 汪慧敏
出处 《计算机技术与发展》 2009年第8期41-44,共4页 Computer Technology and Development
关键词 异常检测 人工免疫系统 负选择算法 超矩形检测器 anomaly detection artificial immune system negative selection algorithm hyper - rectangle detector
  • 相关文献

参考文献2

二级参考文献16

  • 1Forrest S, Perelson A. Self-nonself Discrimination in a Computer[C].Proceeding of 1994 IEEE Symposium on Research in Security and Privacy, Los Alamos, CA: IEEE Computer Society Press,1994:202-212.
  • 2Hofmery S, Forrest S. Architecture for an Artificial Immune System[J]. Evolutionary Computation, 2000,7(1):45-68.
  • 3Kim J, Bentley P. An Artificial Immune Model for Network Intrusion Detection[C].7^th European Conference on Intelligent Techniques and Soft Computing (EUFIT'99), Aachen, Germany, 1999:13-19.
  • 4Kim J, Bentley P. An Evaluation of Negative Selection in an Artificial Immune System for Network Intrusion Detection[C].Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001),2001: 1330-1337.
  • 5D'haeseleer P, Forrest S, Helman P. An Immunological Approach to Change Detection: Algorithms, Analysis and Implications[C]. In Proceeding of the 1996 IEEE Symposium on Computer Security and Privacy, IEEE Press, 1996: 110-119.
  • 6Kim J, Bentley P. Negative Selection and Niching by An Artificial Immune System for Network Intrusion Detection[C]. In GECCO-99 Proceedings, 1999:149-158.
  • 7http://cism.jpl.nasa.gov/programs/RCT/BioCompUD.html
  • 8Hofmeyr S, Forrest S. Architecture for an artificial immune system. Evolutionary Computation Journal, 2000, 8(4):443~473
  • 9Dasgupta D, Forrest S. Artificial immune systems in industrial applications. In:the International Conference on Intelligent Processing and Manufacturing Material (IPMM). Honolulu, HI, 1999, http://issrl.cs. memphis.edu/AIS/
  • 10Dasgupta D, Forrest S. Novelty detection in time series data using ideas from immunology. In:Proceedings of The International Conference on Intelligent Systems, 1999, http://issrl.cs.memphis.edu/AIS/

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部