期刊文献+

一种基于神经网络的入侵检测技术 被引量:3

Technology of Intrusion Detection Based on Neural Network
下载PDF
导出
摘要 应用神经网络技术不仅能识别已知的网络入侵行为,而且也能识别许多未知的网络入侵的变种。BP神经网络是一种成功的神经网络技术,然而,标准BP算法学习速率固定,不能根据实际情况动态改变学习速率。为了自适应当前网络学习的状况,提高网络的收敛速度,提出了一种基于综合增加动量项与自适应调节学习速率相结合的改进BP算法,可以满足入侵检测分类识别的需求。选用Kddcup 1999 Data网络连接数据集进行特征提取和预处理之后,送入神经网络进行训练和测试,得到较高的检测率和较低的误报率。实验表明,基于改进的BP神经网络的入侵检测方法是有效的。 Neural network can recognize the known action of network attacks as well as the unknown variation of the known network intrusion. Neural network based on BP algorithm is a kind of successful technology. However, the learning rate of the standard BP algorithm is static, and cannot be adjusted dynamically according to current real situation. In order to self- adjust the current studying status of neural network and enhance the speed of convergence of network, here present and apply the improved BP algorithm combined a method of adding momentum item(s) with the self- adjusting learning rate in the paper. The improved BPNN can meet the needs of classifted recognition of IDS. Experiments with KDD CUP 1999 network traffic connections which have been preprocessed after feature abstraction have shown that the improved BPNN is effective for intrusion detection owing to good performance of the higher attack detection rate and the lower false positive rate.
出处 《计算机技术与发展》 2009年第8期148-150,154,共4页 Computer Technology and Development
基金 国家自然科学基金重大研究计划项目(90604003)
关键词 入侵检测 BP算法 检测率 误报率 intrusion detection BP algorithm ADR FPR
  • 相关文献

参考文献3

二级参考文献17

  • 1de Boer R C. A Generic Architecture for Fusion-Based Intrusion Detection Systems[D]. [s. l.]:Erasmus University, Rotterdam School of Economics,2002.
  • 2Frank,Jeremy.Artificial intelligence and intrusion detection:current and future directions[C].In Proceedings of the 17th National Computer Security Conference.1994.
  • 3Cannady J..Artificial neural networks for misuse detection[C].In Proceedings of the 1998 National Information Systems Security Conference(NISSC'98),Arlington,VA.,October 5-8 1998:443~456
  • 4Endler D.. Intrusion detection: applying machine learning to solaris audit data[C]. In Proceedings of the 1998 Annual Computer Security Applications Conference (ACSAC'98), 268~279, Los Alamitos, CA, December 1998. IEEE Computer Society, IEEE Computer Society Press. Scottsdale, AZ.
  • 5Cannady J.. Artificial neural networks for misuse detection[C]. In Proceedings of the 1998 National Information Systems Security Conference (NISSC'98), 443~456, October 5-8 1998. Arlington, VA.
  • 6Ghosh A.K. ,Schwartzbard A.,Schatz M.. Using program behavior profiles for intrusion detection[C]. In Proceedings of the SANS Intrusion Detection Workshop, February 1999. To appear.
  • 7Agrawal R,Srikant R.Fast algorithms for mining association rules in large database[R].In Research Report RJ 9839,San Jose,CA:IBM Almaden Research Center,1994.
  • 8Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[A].Proceedings of the ACM SIGMOD Conference on Management of data[C].[s.l.]:[s.n.],1993.207-216.
  • 9Cohem W W.Fast Effective Rule Induction[A].In Proceedings of the Twelfth International Conference on Machine Learning (ICML-95)[C].Lake Tahoe,CA:Morgan Kaufman,1995.115-123.
  • 10Lee W.A Data Mining Framework for Constructing Features and Models for Intrusion Detection Systems[D].New York:Columbia University,1999.

共引文献24

同被引文献19

  • 1Paula D.An intrusion detection system using ideas from the immune system[C] //Proc Congress on Evolutionary Computation.Piscatway:IEEE Press,2004:1059-1066.
  • 2Bass T.Intrusion detection systems and multisensor data fusion[J].Communications of the ACM,2000,43(4):99-105.
  • 3Giacinto G,Roli F,Didaci L.Fusion of multiple classifiers for intrusion detection in computer networks[J].Pattern Recognition Letters,2003,24(12):1795-1803.
  • 4Pawalk Z. Rough sets[J]. International Journal of Informa- tion and Computer Science, 1982, 11(5): 341-356.
  • 5Ziarko W. Variable precision rough set model[J]. Journal of Computer and System Sciences, 1993, 46(1) :39-59.
  • 6Yang C L. An evidence combination model based on variable precision rough sets EC]//International Conference on Ma- chine Learning and Cybernetics ( ICMLC), Guilin: IEEE Conference Press, 2011: 195-198.
  • 7Mao C Y. Variable precision rough set-based fault diagnosis for web services[C]//IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communica- tions (TrustCom), Changsha: IEEE Conference Press, 2011: 1550-1555.
  • 8Inuiguchi M. Several approaches to attribute reduction in variable precision rough set model[J]. Modeling Decisions for Artificial Intelligence Lecture Notes in Computer Science, 2005, 3558, 215-226.
  • 9林果园,曹天杰.入侵检测系统研究综述[J].计算机应用与软件,2009,26(3):14-17. 被引量:23
  • 10朱守业.基于BP神经网络和Bagging算法的入侵检测[J].计算机工程与应用,2009,45(18):123-125. 被引量:3

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部