期刊文献+

网络异常的主动检测与特征分析 被引量:3

Active Detection and Feature Analysis About Network Anomaly
下载PDF
导出
摘要 目前入侵检测系统主要使用的技术还是特征检测,它只能检测已知的入侵,而异常检测尽管能检测未知入侵,却无法保证准确性和可靠性。特征检测是建立在对特征的准确定位基础之上的,而异常检测是基于不可靠行为的,只能描述某种行为的趋势。文中对基于异常和特征的入侵检测系统模型做了一定研究,把网络异常特征与异常检测技术结合,提高了入侵检测系统的检测效果。 Currently the main technology of intrusion detection system is feature detection, which can only detect the known intrusion, and anomaly detection can be used to detect the unknown intrusion, it is unable to ensure its accuracy and reliability. While anomaly detection is based on uncertain behavior, which can only describe the trend of behavior, feature detection is based on accurate feature locating. In this paper proposed a method which incorporate anomaly detection and feature detection to gain better performance, and also discussed the intrusion detection system model based on feature detection and anomaly detection.
作者 赵辉 张鹏
出处 《计算机技术与发展》 2009年第8期159-161,165,共4页 Computer Technology and Development
基金 教育部全国教育科学计划(2006JKS2007)
关键词 异常检测 特征提取 主动检测 anomaly detection feature extraction active intrusion
  • 相关文献

参考文献5

二级参考文献26

  • 1彭诗力,谭汉松.基于特征值的多模式匹配算法及硬件实现[J].计算机工程与应用,2005,41(1):148-150. 被引量:5
  • 2唐皓,卢显良.基于改进双链树的多模式匹配算法[J].计算机应用,2005,25(2):365-366. 被引量:2
  • 3张健,陈松乔.基于特征值的多模式匹配算法[J].信息安全与通信保密,2005,27(9):95-97. 被引量:3
  • 4包潘晴,杨明福.基于KPCA和SVM的网络入侵检测[J].计算机应用与软件,2006,23(2):125-127. 被引量:19
  • 5M.Dacier, Design of an Intrusion-Tolerant Intrusion Detection System, Maliciou-and Accidental-Fault tolerance for Internet Applications[J].Aug.9, 2002.
  • 6Fengmin Gong, Deciphering Detection Techniques: PartII Anomaly-Based Intrusion Detection, Network Associates White Paper[J].March 2003.
  • 7Sandeep Kumar. Glassicaion and Detection of Computer Intrusions. PhD thesis, Purdue University. West Lafayette, IN 47907, 1996[J/OL].ftp://coast.cs.purclue.ect~mWCOAST/papers/ 5SndeeP-lWm&/kumar-intdet-phddiss.pgz.
  • 8Wenke Lee, Salvatore J. Stolfo, A Framework for Construction Features and Models for Intrusion Detection Systems[J].ACM Transactions on Information and System Security,Vol 3 , Nov.2000,pp:227-261.
  • 9ROESCH M, GREEN C. http://www.snort.org/docs/writing_rules/ chap2. html#tth_sEc2.4.2 [EB/OL].
  • 10JUNG J, PAXSON V, BERGER A W, et al. Fast portscan detection using sequential hypothesis testing[A]. Proc IEEE Symposium on Securry and Privacy 2004 [C]. Oakland, Canada, 2004. 211- 225.

共引文献25

同被引文献19

  • 1文小燕,杜海若.数据挖掘的发展和应用综述[J].电脑知识与技术(过刊),2007(18). 被引量:2
  • 2王鑫,王洪国,王珺,王金枝.数据挖掘中聚类方法比较研究[J].计算机技术与发展,2006,16(10):20-22. 被引量:22
  • 3苏辉贵,傅秀芬,钟洪,苏辉财,韩韬.数据挖掘在入侵检测中的应用[J].计算机技术与发展,2006,16(10):143-144. 被引量:3
  • 4Zhang Yan, Ou Yangjia. The Design and Implementation of Host-based Intrusion Detection System[ C]//Intelligent Information Technology and Security Information. [ s. l. ] : [ s. n. ], 2010:595-598.
  • 5Zhang Cuixiao, Zhang Guobing, Sun Shanshan. A Mixed Unsu- pervised Clustering- based Intrusion Detection Model [ C ]// 3rd International Conference on Genetic and Evolutionary Computing. [ s. 1. ~ : [ s. n. ] ,2009:426-428.
  • 6彭铮良.网络安全入侵检测系统.计算机周刊,2001,(4):22-23.
  • 7Han Jiawei,Kamber M,数据挖掘概念与技术(中译本)[M].北京:机械工业出版社,2006.
  • 8Koza J R. Genetic Programming, on the Programming of Com- puters by Means of Natural Selection [ M ]. [ s. 1. ] : MIT Press, 1992.
  • 9KDD cup 99 data[ EB/OL]. 1999. http://kdd.ics. uci. edu/ databases/kddcup99/kddcup99, html.
  • 10Wenke Lee.A Framework for Constructing Feature and Modle for Intrusion DetectionSystem[J].ACM Transacations on Information and System Seeurity,2002,3(4):227-216.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部