期刊文献+

基于互信息可信度的贝叶斯网络入侵检测研究 被引量:6

Bayesian network intrusion detection method based on credibility of mutual information
下载PDF
导出
摘要 传统贝叶斯入侵检测算法没有考虑不同属性和属性权值对入侵检测结果的影响,因此分类准确率不够高。针对传统贝叶斯入侵检测算法存在的不足,提出基于互信息可信度的贝叶斯网络入侵检测算法。在综合考虑网络入侵检测数据特点和传统贝叶斯分类算法优点的基础上,用互信息相对可信度进行特征选择,删除一些冗余属性,把互信息相对可信度作为权值引进贝叶斯分类算法中,得到优化的贝叶斯网络入侵检测算法(MI-NB)。实验结果表明,MI-NB算法能大大降低分类数据的维数,比传统贝叶斯入侵检测算法及改进算法有更高的分类准确率。 Traditional Bayesian intrusion detection algorithm does not consider the influence caused by different properties and weights of the properties, so the classification accuracy rate is not high enough. Aiming at the shortage of traditional Bayesian intrusion detection algorithm, a Bayesian network intrusion detection method based on credibility of mutual information is proposed. After considering the characteristics of network intrusion detection data and the merits of traditional Bayesian classification, credibility of mutual information is used to select feature, and some redundant properties are deleted. The credibility as weights is introduced Bayesian classifier in order to get optimized Bayesian network intrusion detection algorithm (MI-NB). Experiments show that MI-NB algorithm can greatly reduce the dimension of classification data and has higher classification accuracy rate than the traditional intrusion detection algorithm and the improved algorithm.
出处 《计算机工程与设计》 CSCD 北大核心 2009年第14期3288-3290,3382,共4页 Computer Engineering and Design
基金 贵州省2008年省级信息化专项基金项目(0830) 贵州省科技计划工业攻关基金项目(黔科合GY字[2008]3035)
关键词 特征选择 互信息 可信度 贝叶斯分类 入侵检测 feature selection mutual information credibility Bayesian classifier intrusion detection
  • 相关文献

参考文献5

二级参考文献21

  • 1陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 2HanJ KamberM.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 3朱雪龙.应用信息论基础[M].清华大学出版社,2000..
  • 4Piramuthu S. Evaluating Feature Selection Methods for Learning in Data Mining Applications//Proc of the 31st Hawaii International Conference on System Sciences. Kohala Coast, USA,1998, V: 294-301
  • 5Battiti R. Using Mutual Information for Selecting Features in Supervised Neural Net Learning. IEEE Trans on Neural Networks, 1994, 5(4): 537-550
  • 6Kwak N, Choi C H. input Feature Selection for Classification Problems. IEEE Trans on Neural Networks, 2002, 13(1): 143-159
  • 7Kwak N, Choi C H. Input Feature Selection by Mutual Informarion Based on Parzen Window. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(12): 1667-1671
  • 8Peng Hanchuan, Long Fuhui, Ding C. Feature Selection Based on Mutual Information Criteria of Max-Dependency, Max-Relevance and Min-Redundancy. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238
  • 9Chow T W S, Huang D. Estimating Optimal Feature Subsets Using Efficient Estimation of High-Dimensional Mutual Information. IEEE Trans on Neural Networks, 2005, 16(1): 213-224
  • 10Quinlan J R. CA. 5 .. Programs for Machine Learning. San Mateo,USA: Morgan Kaufmann, 1993

共引文献38

同被引文献34

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部