期刊文献+

最小二乘分解算法在车型识别中的应用 被引量:2

Application of Least Square Decomposition Algorithm in Vehicle Recognition
下载PDF
导出
摘要 提出一种最小二乘支持向量机的序贯最小分类分解算法。针对最小二乘支持向量机,通过对核函数的相关变换,将二阶的误差信息归结到优化方程的一阶信息中,从而简化运算过程。采用最优函数梯度二阶信息选择工作集,实现最小二乘支持向量机分解算法,提高了算法的收敛性。采用径向基核函数和交叉验证网格搜索的方法验证算法的分类准确性。实验结果表明,提出的分类算法应用于车型识别中,可以得到比其他分类方法更好的分类准确度。 In this paper a Sequential Minimal Optimization (SMO) decomposition algorithm of Least Square Support Vector Machines ( LS - SVM) for classification is proposed. Through transforming kernel function, the second - order error information is translated into the first - order information of optimal function to simplify the process of computation for LS - SVM. By using optimal function gradient' s second - order information to select working set, the LS - SVM decomposition algorithm is achieved and its convergence is improved. Radial Basis Function (RBF) kernel and grid - search method on cross - validation is used to verify classification accuracy of the algorithm. Results of the experiments show that the algorithm presented in this paper has better classification accuracy than other algorithms when it is applied in vehicle recognition.
作者 周磊 冯玉田
出处 《计算机仿真》 CSCD 北大核心 2009年第7期274-277,共4页 Computer Simulation
基金 上海市重点学科建设项目资助(T0102)
关键词 最小二乘支持向量机 序贯最小优化 分解算法 车型识别 Least square support vector machines Sequential minimal optimization Decomposition algorithm Vehicle recognition
  • 相关文献

参考文献1

  • 1J.A.K. Suykens,J. Vandewalle. Least Squares Support Vector Machine Classifiers[J] 1999,Neural Processing Letters(3):293~300

同被引文献17

  • 1宋丽,李令奇.ETC中具有车型识别功能的车辆检测器设计[J].微计算机信息,2005,21(08Z):130-131. 被引量:9
  • 2吴晓丹.车型自动分类识别系统的硬件设计[J].科技资讯,2006,4(17):97-98. 被引量:2
  • 3张颖新,范东启,杨迪,杨灿.车型自动识别系统研究[J].交通与运输,2006,22(B07):45-48. 被引量:13
  • 4高彦宇 尹怡欣.一种基于支持向量机和半监控期望最大算法的分级图像标识方法.自动化学报,2010,36(7):960-967.
  • 5HSUC W,LIN C J. A Comparison of methods for multi-class support vector machines[ J ]. IEEE Transactions on Neural Networks, 2002,13(2): 415-425.
  • 6GONZALZRC,WOODSRE.数字图象处理[M].2版.阮秋琦,阮宇智,译.北京:电子工业出版社,2003.
  • 7ANASTASIOS D D, NIKOLAOS D D, KLIMIS S N, et al. An efficient fully unsupervised video object segmentation scheme using an adaptive neural-network classifier architecture[ J ]. IEEE Transactions on Neural Networks, 2003,14 ( 3 ) :227-231.
  • 8SERGIOST,KONSTANTINOSK.模式识别[M],2版.李晶皎,译.北京:电子工业出版社,2004.
  • 9XIE L. Research video processing technique in Imelligent transportation system [ D]. Wuhan: Huazhong University of Science and Technology, 2006.
  • 10PASTORE J I, MOLER E G,BALLARIN V L. Segmentation of brain magnetic resonance images through morphological operators and geodesic distance[ J]. Digital Signal Processing, 2005,15 (2) : 153-160.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部