期刊文献+

一类具有阶段结构和时滞的捕食者-食饵模型分析(英文)

Analysis of a Stage-structured Predator-prey Model with Delay
下载PDF
导出
摘要 研究一类具有时滞和阶段结构的捕食食饵系统.通过对特征方程的分析得到了正平衡点及边界平衡点的局部稳定性,进一步地给出了当τ增加到0τ时,系统在正平衡点附近产生Hopf分支.最后,对保持稳定性的时滞长度进行了估计. A strage-structured predator-prey system with time delay is considered. By analyzing the characteristic equations, the local stability of a positive equilibrium and a boundary equilibrium is discussed, respectively. Further it is proved that the system undergoes a Hopf bifurcation at the positive equilibrium when τ = τ0. The estimation of the length of delay to preserve stability has also been calculated.
出处 《信阳师范学院学报(自然科学版)》 CAS 2009年第3期321-324,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 National Natural Science Foundation of China(10771179)
关键词 阶段结构 捕食食饵模型 时滞 HOPF分支 stage structure predator-prey model delay Hopf bifurcation
  • 相关文献

参考文献3

  • 1师向云,郭振.一类具有时滞和阶段结构的捕食系统的全局分析[J].信阳师范学院学报(自然科学版),2008,21(1):32-35. 被引量:7
  • 2H. L. Freedman,V. Sree Hari Rao. The trade-off between mutual interference and time lags in predator-prey systems[J] 1983,Bulletin of Mathematical Biology(6):991~1004
  • 3K. Gopalsamy. Harmless delays in model systems[J] 1983,Bulletin of Mathematical Biology(3):295~309

二级参考文献10

  • 1Aiello W G, Freedman H I. A Time Delay Model of Single-species Growth with Stage Structure[ J]. Math Biosci (S0025-5564), 1990,101:139- 153.
  • 2Cao Y,Fan J,Card T C. The Effects of Stage-structured Population Growth Models[ J]. Nonli Anal:Th Math Appl(S0362-546X) ,1992,16(2) : 95-105.
  • 3Cui J A, Chen L S, Wang W D. The Effect of Dispersal on Population Growth with Stagestructure [ J ]. Computers Math Applic (S0898-1221), 2000,39:91-102.
  • 4Diekmann O, Nisbet R M, Gurney W S C, et al. Simple Mathematical Models for Cannibalism:a Tique and a New Approach [ J ]. Math Biosci ( S0025-5564 ), 1986,78:21-46.
  • 5Hastings A. Cycles in Cannibalistic Egg-larval Interactions[ J]. J Math Biol(S0303-6812) ,1987,24:651-666.
  • 6Freedman H I, Sree H R V. The Trade-off Between Mutual Interference and Time Lags in Predator-prey Systems [ J ]. Bull Mathe Biol (S0092- 8240), 1983,45:991-1003.
  • 7Cooke KL, Van D D, Riessche P. On Zeros of Some Transcendental Functions [ J ]. Funkcial Evac ( S1443 -5756 ), 1986,29:77-90.
  • 8X iao Y N, Chen L S. A Ratio-dependent Predator-prey Model with Disease in the Prey[ J ]. Appl Math C omput (S0096-3003) ,2002,131:397- 414.
  • 9Hale J K, Waltman P. Persistence Ininfinite-dimensional Systems [ J ]. SIAM J Math Anal( S0036 -1399 ), 1989,20: 388-396.
  • 10王豪,郑丽丽.一类具有阶段结构和时滞的捕食与被捕食系统(英文)[J].信阳师范学院学报(自然科学版),2004,17(2):140-143. 被引量:7

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部