期刊文献+

一类具有非线性脉冲接种的时滞SIR模型分析(英文) 被引量:4

Analysis of a Delayed SIR Epidemic Model with Nonlinear Incidence Rate and Impulsive Vaccination
下载PDF
导出
摘要 研究了一类非线性脉冲接种的时滞SIR模型.运用离散动力系统的频闪映射,得到了无病周期解的存在性及其表达式.利用比较定理得到了无病周期解的全局吸引和疾病持续的充分条件. A delayed SIR epidemic model with pulse vaccination and nonlinear incidence rate is investigated. Using the discrete dynamical system determined by the stroboscopic map, the existence of the disease-free periodic solution and its exact expression are obtained. Moreover, by the comparison theorem, the sufficient conditions of global attractivity of the disease-free periodic solution and the permanence of disease are established.
作者 王霞 江晓武
出处 《信阳师范学院学报(自然科学版)》 CAS 2009年第3期325-328,共4页 Journal of Xinyang Normal University(Natural Science Edition)
基金 Natural Science Foundation of Educational Department of Henan Province(2009B110019) The Backbone Youth Teacher Foun-dation of Xinyang Normal University
关键词 脉冲接种 周期解 时滞 持续 全局吸引 pulse vaccination periodic solution delay permanence global attractivity
  • 相关文献

参考文献1

  • 1Boris Shulgin,Lewi Stone,Zvia Agur. Pulse vaccination strategy in the SIR epidemic model[J] 1998,Bulletin of Mathematical Biology(6):1123~1148

同被引文献36

  • 1Capasso V,Serio G.A generalization of the Kermack-Mckendrick deterministic epidemic model[J] .Math Biosci(S0025-5564),1978,42:41-61.
  • 2Ruan S,Wang W.Dynamical behavior of an epidemic model with a nonlinear incidence rate[J] .J Differ Equations(S0022-0396),2003,188:135-163.
  • 3Xiao D,Ruan S.Global analysis of an epidemic model with a nonlinear incidence rate[J] .Math Biosci(S0025-5564),2007,208(2):419-429.
  • 4Liu W M,Hethcote H W,Levin S A.Dynamical behavior of epidemiological models with nonlinear incidence rates[J] .J Math Biol(S1522-9602),1987,25:359-380.
  • 5Liu W M,Levin S A,Iwasa Y.Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J] .J Math Biol(S1522-9602),1986,23:187-204.
  • 6Alexander M E,Moghadas S M.Periodicity in an epidemic model with a generalized non-linear incidence[J] .Math Biosci(S0025-5564),2004,189:75-96.
  • 7Beretta E,Kuang Y.Geometric stability switch criteria in delay differential systems with delay dependent parameters[J] .SIAM J Math Anal(S 1095-7154),2002,33:1144-1165.
  • 8Gao S,Teng Z,Xie D.Analysis of a delayed SIR epidemic model with pulse vaccination[J] .Chaos Solitons Fractals (S0960-0779),2009,40:1004-1011.
  • 9Wang X, Tao Y D, Song X Y. A delayed HIV-1 infection model with Beddington-DeAngelis functional response[ J]. Nonlinear Dynamics,2010, 62:67-72.
  • 10Hethcote H W. Qualitative analyses of communicable disease models[ J]. Mathematical Biosciences, 1976,28:335-356.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部