期刊文献+

Congruence Subgroups of Hecke Groups 被引量:1

Congruence Subgroups of Hecke Groups
原文传递
导出
摘要 Hecke groups are an important tool in subgroups of Hecke groups play an important rule investigating functional equations, and congruence in research of the solutions of the Dirichlet series. When q, m are two primes, congruence subgroups and the principal congruence subgroups of level m of the Hecke group H(√q) have been investigated in many papers. In this paper, we generalize these results to the case where q is a positive integer with q ≥ 5, √q ¢ Z and m is a power of an odd prime. Hecke groups are an important tool in subgroups of Hecke groups play an important rule investigating functional equations, and congruence in research of the solutions of the Dirichlet series. When q, m are two primes, congruence subgroups and the principal congruence subgroups of level m of the Hecke group H(√q) have been investigated in many papers. In this paper, we generalize these results to the case where q is a positive integer with q ≥ 5, √q ¢ Z and m is a power of an odd prime.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第6期931-944,共14页 数学学报(英文版)
基金 NSF of China(No.10571180) the Guangdong Provincial Natural Science Foundation(No.04009801)
关键词 Hecke group principal congruence subgroup congruence subgroup Hecke group, principal congruence subgroup, congruence subgroup
  • 相关文献

参考文献15

  • 1Hecke, E: Uber die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung. Math. Ann., 112, 664-699 .(1936).
  • 2Cangiil, i-N., Singerman, D.: Normal subgroups of Hecke groups and regular maps. Math. Proc. Camb. Phil. Soc., 123(1), 59-74 (1998).
  • 3Schmidt, T.-A., Sheingorn, M.: Length spectra of the Hecke triangle groups. Math. Z., 220(3), 369-397 (1995).
  • 4Lang, M. L., Lim, C. H., Tan, S. P.: Principal congruence subgroups of the Hecke groups. J. Number Theory, 85(2), 220-230 (2000).
  • 5Newman, M.: Integeral matrices, New York, Academic Press, 1972.
  • 6Parson, L. A.: Generalized Kloosterman sums and the Fourier coefficients of cusp forms. Trans. A. M. S., 217, 329-350 (1976).
  • 7Parson, L. A.: Normal congruence subgroups of the Hecke groups G(√2) and G(√3). Pacific J. Math., 70, 481-487 (1977).
  • 8Yilmaz, Ozgiir N., Cangiil, i.-N.: On the group structure and parabolic points of the Hecke group H(λ). Proc. Estonian Acad. Sci. Phys. Math., 51(1), 35-46 (2002).
  • 9Rosen, D.: A class of continued fractions associated with certain properly discontinuous groups. Duke Math. J., 21, 549-563 (1954).
  • 10Cangiil, i. N., Bizim, O.: Congruence subgroup of some Hecke groups. Bull. Inst. Math. Acad. Sinica., 30(2), 115-131 (2002).

同被引文献7

  • 1Miyake T. Modular Form [ M ]. Berlin Heidelberg, Springer-Verlag, 2006:43 -63.
  • 2Wely H. Theory of reduction for arithmetical equivalence [ J ]. Tran A.M.S, 1940, 48(1): 126-164.
  • 3Minkowski H. Gesammelte Abhandlungen[ M]. Chelsea, New York,1967.
  • 4Rosen D, Schmidt T A. Hecke groups and continued fractions[ J]. Bull. Austral. Math. Soc, 1992, 46(3) : 459 -475.
  • 5Grenier D. Fundamental domains for the general linear group[ J]. Pac J Math, 1988, 132(2) : 247 -262.
  • 6Rosen D. A Class of Continued Fractions Associated with Certain Properly Discontinuous Group [ R ]. Duke Math. J, 1954, 21 (3) : 549 - 564.
  • 7Schmidt T A. Sheingona M. On the infinite volume Hecke groups [J]. Compositio Math, 1995, 95(2) : 247 -262.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部