摘要
Hecke groups are an important tool in subgroups of Hecke groups play an important rule investigating functional equations, and congruence in research of the solutions of the Dirichlet series. When q, m are two primes, congruence subgroups and the principal congruence subgroups of level m of the Hecke group H(√q) have been investigated in many papers. In this paper, we generalize these results to the case where q is a positive integer with q ≥ 5, √q ¢ Z and m is a power of an odd prime.
Hecke groups are an important tool in subgroups of Hecke groups play an important rule investigating functional equations, and congruence in research of the solutions of the Dirichlet series. When q, m are two primes, congruence subgroups and the principal congruence subgroups of level m of the Hecke group H(√q) have been investigated in many papers. In this paper, we generalize these results to the case where q is a positive integer with q ≥ 5, √q ¢ Z and m is a power of an odd prime.
基金
NSF of China(No.10571180)
the Guangdong Provincial Natural Science Foundation(No.04009801)