期刊文献+

Boundedness of the Commutator of Marcinkiewicz Integral with Rough Variable Kernel 被引量:1

Boundedness of the Commutator of Marcinkiewicz Integral with Rough Variable Kernel
原文传递
导出
摘要 In this paper the author proves that the commutator of the Marcinkiewicz integral operator with rough variable kernel is bounded from the homogeneous Sobolev space Lγ^2(R^n) to the Lebesgue space L^2(R^n), which is a substantial improvement and extension of some known results. In this paper the author proves that the commutator of the Marcinkiewicz integral operator with rough variable kernel is bounded from the homogeneous Sobolev space Lγ^2(R^n) to the Lebesgue space L^2(R^n), which is a substantial improvement and extension of some known results.
作者 Yan Ping CHEN
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第6期983-1000,共18页 数学学报(英文版)
基金 NSF of China(Grant Nos.10571015 and 10826046) SRFDP of China(Grant No.20050027025)
关键词 COMMUTATOR Marcinkiewicz integral variable kernel BMO Sobolev space spherical harmonic function commutator, Marcinkiewicz integral, variable kernel, BMO, Sobolev space, spherical harmonic function
  • 相关文献

参考文献2

二级参考文献15

  • 1[1]Chen,J.,Fan,D.,Ying,Y.,Certain operators with singular kernels,Canadian Math.J.,2003,55:504-532.
  • 2[2]Calderón,A.P.,Zygmund,A.,On existence of certain singular integrals,Acta Math.,1952,88:85-139.
  • 3[3]Calderón,A.P.,Zygmund,A.,On singular integrals,Amer.J.Math.,1956,78:289-309.
  • 4[4]Calderón,A.P.,Zygmund,A.,On singular integral with variable kernels,Appl.Anal.,1978,7:221-238.
  • 5[5]Christ,M.,Duoandikoetxea,J.,Rubio de Francia,J.L.,Maximal operators related to the Radon transform and the Calderón-Zygmund method of rotations,Duke Math.J.,1986,53:189-208.
  • 6[6]Chen,J.,Ding,Y.,Fan,D.,On a Hyper-Hilbert transform,Chinese.Ann.Math (B),2003,24:475-484.
  • 7[7]Stein,E.M.,Singular Integrals and Differentiability Properties of Functions,Princeton:Princeton Univ.Press,1970.
  • 8[8]Ding,Y.,Lin,C.,Shao,S.,On Marcinkiewicz integral with variable kernels,Indiana.Univ.Math.Jour.,2004,53:805-822.
  • 9[9]Ding,Y.,Fan,D.,Pan,Y.,Littlewood-Paley functions and singular integrals,Hokkaido Math.J.,2000,29:537-552.
  • 10[10]Stein,E.M.,Weiss,G.,Introduction to Fourier Analysis on Euclidean Spaces,Princeton:Princeton Univ.Press,1971.

共引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部