期刊文献+

On the Existence of Global Bisections of Lie Groupoids 被引量:2

On the Existence of Global Bisections of Lie Groupoids
原文传递
导出
摘要 We show that every source connected Lie groupoid always has global bisections through any given point. This bisection can be chosen to be the multiplication of some exponentials as close as possible to a prescribed curve. The existence of bisections through more than one prescribed point is also discussed. We give some interesting applications of these results. We show that every source connected Lie groupoid always has global bisections through any given point. This bisection can be chosen to be the multiplication of some exponentials as close as possible to a prescribed curve. The existence of bisections through more than one prescribed point is also discussed. We give some interesting applications of these results.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第6期1001-1014,共14页 数学学报(英文版)
基金 NSFC(Grant No.10871007) CPSF(Grant No.20060400017)
关键词 Lie groupoid BISECTION exponential mad Lie groupoid, bisection, exponential mad
  • 相关文献

参考文献20

  • 1Ehresmann, C.: Gattungen yon lokalen Strukturen. Jber. Deutsch. Math. Verein., 60, Abt. 1, 49-77 (1957).
  • 2Ehresmann, C.: Categories et structures, Dunod, Paris, 1965.
  • 3Ehresmann, C.: (Euvres completes et commentees. I-1,2. Topologie algdbrique et geometrie diff6rentielle. Cahiers Topologie Geom. Differentielle, 24, suppl. 1, 1983.
  • 4Pradines, J.: Theorie de Lie pour les groupoides differentiables. Relations entre proprietes locales et globales. C. R. Acad. Sci. Paris Sdr. A-B, 263, A907-A910 (1966).
  • 5Pradines, J.: Theorie de Lie pour les groupoides differentiables. Calcul differenetiel dans la categorie des groupoides infinitesimaux. C. R. Acad. Sci. Paris Sdr. A-B, 264, A245-A248 (1967).
  • 6Mackenzie, Kirill C. H.: Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Note Series, 124, Cambridge University Press, Cambridge, 1987.
  • 7Mackenzie, Kirill C. H.: General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005.
  • 8Kumpera, A.: An introduction to Lie groupoids, Duplicated notes, Nficleo de Estudos e Pesquisas Cientfficas, Rio de Janeiro, 1971.
  • 9Cannas da Silva, A., Weinstein, A.: Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10, American Mathematical Society, Providence, RI, 1999.
  • 10Weinstein, A.: Symplectic groupoids and Poisson manifolds. Bull. Amer. Math. Soc. (N. S.), 16(1), 101-104 (1987).

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部