摘要
We show that every source connected Lie groupoid always has global bisections through any given point. This bisection can be chosen to be the multiplication of some exponentials as close as possible to a prescribed curve. The existence of bisections through more than one prescribed point is also discussed. We give some interesting applications of these results.
We show that every source connected Lie groupoid always has global bisections through any given point. This bisection can be chosen to be the multiplication of some exponentials as close as possible to a prescribed curve. The existence of bisections through more than one prescribed point is also discussed. We give some interesting applications of these results.
基金
NSFC(Grant No.10871007)
CPSF(Grant No.20060400017)