期刊文献+

Congruences on Balanced Pseudocomplemented Ockham Algebras 被引量:1

Congruences on Balanced Pseudocomplemented Ockham Algebras
原文传递
导出
摘要 The variety bpO consists of those algebras (L; ∧,∨, f,* ) of type 〈2,2,1, 1,0,0〉 where (L; ∧,∨, f, 0, 1) is an Ockham algebra, (L; ∧,∨, *, 0, 1) is a p-algebra, and the operations x → f(x) and x → x^* satisfy the identities f(x^*) = x^** and [f(x)]^* = f^2(x). In this note, we show that the compact congruences on a bpO-algebra form a dual Stone lattice. Using this, we characterize the algebras in which every principal congruence is complemented. We also give a description of congruence coherent bpO-algebras. The variety bpO consists of those algebras (L; ∧,∨, f,* ) of type 〈2,2,1, 1,0,0〉 where (L; ∧,∨, f, 0, 1) is an Ockham algebra, (L; ∧,∨, *, 0, 1) is a p-algebra, and the operations x → f(x) and x → x^* satisfy the identities f(x^*) = x^** and [f(x)]^* = f^2(x). In this note, we show that the compact congruences on a bpO-algebra form a dual Stone lattice. Using this, we characterize the algebras in which every principal congruence is complemented. We also give a description of congruence coherent bpO-algebras.
作者 Jie FANG
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第6期1031-1040,共10页 数学学报(英文版)
关键词 pseudocomplemented algebra Ockham algebra subdirectly irreducible pseudocomplemented algebra, Ockham algebra, subdirectly irreducible
  • 相关文献

参考文献6

  • 1Adams, M. E., Atallah, M., Beazer, R.: Congruence distributive double p-algebras. Proc. Edinburgh Math. Soc., 39(2), 71-80 (1996).
  • 2Balbes, R., Dwinger, Ph.: Distributive Lattices, University of Missouri Press, Missouri, 1974.
  • 3Blyth, T. S., Fang, J.: Congruences on Ockham algebras with pseudocomplementation. Communications in Algebra, 27, 5423-5434 (1999).
  • 4Blyth, T. S., Varlet, J. C.: Ockham Algebras, Oxford University Press, Oxford, 1994.
  • 5Fang, J., Sun, Z. J.: Balanced pseudocomplemented Ockham algebras. Algebra Universalis, 57, 291-302 (2007).
  • 6Varlet, J. C.: A regular variety of type (2, 2, 1, 1, 0, 0). Algebra Universalis, 2, 218-223 (1972).

同被引文献6

  • 1R. Beazer. Coherent De Morgan algebras[J]. Algebra Uinversalis, 1987, (24) : 128-136.
  • 2T. S. Blyth, Jie Fang. Congruence coherent double MS-algebras [ J]. Glasgow Math. J, 1999, (41) : 289-295.
  • 3J. Varlet. A regular variety of type (2,2,1,1,0,0) [ J ]. Algebra Uinversalis, 1972, (2) : 218-223.
  • 4M. E. Adam, M. Atallah, R. Beazer. Congruence Distributive doublep- algebra[ J ]. Proc. Ediburgh Math. Soc, 1996,39 (2) : 71-80.
  • 5T. S. Blyth, J.C. Varlet. Ockham Algebras[ M]. Oxford: Oxford University Press, 1994.
  • 6H.P.Sankappanavar. Seml-de Morgan algebra[J]. J. Symbolic Logic,1987,(52):712-724.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部