摘要
对一种类Lorenz系统进行变形,利用新的状态反馈控制器实现超混沌。相图、Lyapunov指数等证明该系统产生的吸引子是超混沌吸引子。利用Lyapunov指数谱和分岔图分析该系统,发现在参数改变时该系统能够在周期态、准周期态、混沌态与超混沌态之间转变。设计了一个模拟电子线路,电路实验与数值仿真结果具有很好的一致性。
One class of Lorenz-like system is reformed and changed to display hyperchaotic by a new state feedback controller in this paper. Phase portrait and Lyapunov exponent are given to verify that the attractor is hyperehaotic. It was demonstrated by Lya- punov exponent spectrum and bifurcation diagram that the new system can switch among abundant dynamical behaviours such as periodic, quasi-periodic, chaotic and hyperchaotic so on. Furthermore, the system is confirmed by the realization of an electronic circuit experiment which shows good agreement with the numerical simulation.
出处
《微计算机信息》
2009年第22期150-153,共4页
Control & Automation
基金
国家自然科学基金
基金申请人:黄炳华
黄新民
项目名称:非线性微分方程基础上的功率平衡
基金颁发部门:国家自然科学基金委(60662001)
关键词
绝对值项
LYAPUNOV指数谱
分岔图
电路实现
absolute term
Lyapunov exponent spectrum
bifurcation diagram
circuit implementation