期刊文献+

支持向量机在烤烟烟叶自动分级中的应用 被引量:8

Application of Support Vector Machine in the Automatic Grading of Flue-cured Tobacco Leaf
下载PDF
导出
摘要 烟叶自动分级是国内外烟草行业的重要研究课题之一。目前采用神经网络、模式识别等技术在对烟叶样本图像进行自动特征提取与分级时,分级的精度不很理想。在此,本文将支持向量机技术引入到烟叶自动分级中。实验表明,该技术可以为烟叶的自动模式识别提供稳定的参数值,与传统的神经网络方法相比,克服了固有的过学习和欠学习问题,并且对复杂模式的识别能力较强,已达到人类专家分级水平,为烟叶自动分级的研究开辟了新途径。 The Automatic Grading of Tobacco Leaf is an important research topic in the domestic and international tobacco industry. The current use of neural networks, pattern recognition and other technology in the image of tobacco samples for automatic feature extraction and grading, the grading accuracy is not very satisfactory. So Support Vector Machines is introduced in the Automatic Grading of Tobacco Leaf in the paper. It is concluded by experiments that this method can automatically provide a stable pattern recognition parameters, it overcomes the inherent defect of neural networks and achieves the standards of tobacco experts. This technique has become a new vehicle to the Automatic Grading of Tobacco Leaf.
出处 《微计算机信息》 2009年第22期195-196,167,共3页 Control & Automation
关键词 烤烟烟叶 支持向量机 多类分类 Flue-cured Tobacco Leaf Support Vector Machines Multi-class classification
  • 相关文献

参考文献7

二级参考文献26

  • 1[4]Support Vector Machines backgrounds and practice[M].Rolf Nevardinna Institute.2001
  • 2[6]Steve R.Gunn.Support Vector Machines for Classification and Regression[M].Faculty of Engineering,Science and Mathematics School of Electronics and Computer Science 1998-10
  • 3VAPNIK V N. The nature of statistical learning [M].Berlin:Springer, 1995.
  • 4VAPNIK V N. Statistical learning theory [M]. New York:John Wiley & Sons, 1998.
  • 5SCHōLKOPH B, SMOLA A J, BARTLETT P L. New support vector algorithms[J]. Neural Computation.2000, 12(5):1207--1245.
  • 6SUYKENS J A K, VANDEWALE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293--300.
  • 7CHEW H-G, BOGNER R E, LIM C-C, Dual v-support vector machine with error rate and training size beasing[A]. Proceedings of 2001 IEEE Int Conf on Acoustics,Speech, and Signal Processing [C]. Salt Lake City,USA: IEEE, 2001. 1269--1272.
  • 8LIN C-F, WANG S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2):464--471.
  • 9SUYKENS J A K, BRANBANTER J D, LUKAS L, et al. Weighted least squares support vector machines:robustness and spare approximation[J]. Neuroeomputing, 2002, 48(1): 85--105.
  • 10ROOBAERT D. DirectSVM: A fast and simple support vector machine perception [A]. Proceedings of IEEE Signal Processing Society Workshop[C]. Sydney, Australia: IEEE, 2000. 356--365.

共引文献2420

同被引文献92

引证文献8

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部