期刊文献+

基于BP神经网络的超分辨率图像重建 被引量:5

Reconstruction of super-resolution image based on BP neural network
下载PDF
导出
摘要 针对卫星图像成像过程中成像装置存在极限,导致图像分辨率低的问题,提出了基于神经网络的图像超分辨率重建(neural networks super-resolution reconstruction,NNSR)方法。该方法利用误差反向传播神经网络(back propagation neural networks,BPNN)对样本图像进行学习和训练,利用图像退化模型获取学习样本,采用向量映射加速BP神经网络的收敛,充分融合了低分辨率序列图像中的冗余信息。通过对训练好的神经网络分别进行样本仿真实验和泛化实验,验证了这种图像超分辨率重建方法的有效性。 The reconstruction of the super-resolution image based on neural networks (NN) is proposed to resolve the problem of image low spatial resolution because of the limitation of imaging devices. An error backpropagation (BP) algorithm is used to learn and train sample images in order to combine the redundancy information of low spatial resolution images sequences. Learning samples are acquired according to the image observation model. Vector mapping is established to speed up the convergence of NN. Simulation and generalization tests are carried on the well-trained NN respectively, and the reconstruction results with higher spatial resolution images verify the effectiveness and validity of BPNN based on vector mapping in the reconstruction of the super-resolution image.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第7期1746-1749,F0003,共5页 Systems Engineering and Electronics
关键词 图像重建 超分辨率 神经网络 BP算法 向量映射 image reconstruction super-resolution neural network BP algorithm vector mapping
  • 相关文献

参考文献1

二级参考文献5

  • 1焦李成.神经网络系统导论[M].西安:西安电子科技大学出版社,1996..
  • 2FESSLER J A, BOOTH S D. Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction [J]. IEEE Trans on Image Processing, 1999, 8(5) : 688 -699.
  • 3SUN Yi. Hopfield neural network based algorithms for image restoration and reconstruction. I. Algorithms and simulations . IEEE Trans on Signal Processing,2000,48 (7) :2105 - 2118.
  • 4KARRAS D A, RCZKO M, MERTZIOS V, et al. Neural network reconstruction of MR images from noisy and sparse k-space samples [ A ]. Proceedings of ICSP [ c ]. IEEE ,2000.
  • 5NGUYEN N, MILANFER P. A computationally efficient superresolution image reconstrution [ J ]. IEEE Trans on Image Processing, 2001, 10(4) :573 -583.

共引文献11

同被引文献68

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部