期刊文献+

纳米粒子在弯管中的输运和沉降特性 被引量:4

Prediction of Nanoparticle Transport and Deposition in Bends
下载PDF
导出
摘要 用摄动法对不同Reynolds数和Schmidt数的纳米粒子在圆截面弯管中的运输和沉积进行了求解.结果表明,当悬浮纳米粒子在直管中流动时,粒子输运模式不依赖于粒子的大小和其它参数.在弯管中运动时,管道外弯侧具有最多的沉积粒子而内弯侧的沉积粒子最少.在管道的上部和下部,不同Schmidt数粒子的沉降特性一致.管道曲率、Reynolds数和Schmidt数对粒子相对沉积效率的影响具有二阶,四阶和一阶的作用. Nanoparticle transport and deposition in bends with circular cross-section were solved for different Reynolds number and Schmidt number. The perturbation method was used to solve the equations. The results show that the particle transport patterns are similar and not dependent on the particle size and other parameters when suspended nanoparticles are flowing in the straight tube. Particle deposition at the outside edge is most intensive, and oppositely, the deposition at the inside edge is the weakest. At the upper and lower tube, the depositions are approximately the same for different Schmidt number. Curvaages of tube, Reynolds number and Schmidt number have effects of second order, fourth order and first order on the relative deposition efficiency, respectively.
出处 《应用数学和力学》 CSCD 北大核心 2009年第8期895-906,共12页 Applied Mathematics and Mechanics
基金 国家自然科学基金(重点)资助项目(10632070)
关键词 纳米粒子 输运 沉降 弯管 摄动法 nanoparticles transport deposition bends perturbation method
  • 相关文献

参考文献2

二级参考文献7

共引文献25

同被引文献59

  • 1MA Jian-feng SHEN Xin-rong ZHANG Ming-kan ZHANG Ben-Zhao.LAMINAR DEVELOPING FLOW IN THE ENTRANCE REGION OF ROTATING CURVED PIPES[J].Journal of Hydrodynamics,2006,18(4):418-423. 被引量:2
  • 2Otanicar T P, Phelan P E, Golden J S. Optical properties of liquids for direct absorption solar thermal energy systems[J]. Solar Energy, 2009, 83(7): 969-977.
  • 3Richard K S, Lee S M. 800 hours of operational experience from a 2 kW solar dynamic system [C]//Mohamed S E1-Genk. Space Technology and Application International Forum, 1999: 1426-1431.
  • 4Odeh S D, Behnia M, Morrison G L. Performance evaluation of solar thermal electric genera- tion systems [ J ]. Energy Conversion and Management, 2003, 44 (4) : 2425-2443.
  • 5Clausing A. Analysis of convective losses from cavity solar central receivers[J]. Solar Ener- gy ,1981,27(1) : 295-300.
  • 6Dehghan A A, Behnia M. Combined natural convection conduction and radiation heat transfer in a discretely heated open cavity[J]. Journal of Heat Transfer, 1996, 118( 1 ) : 55-55.
  • 7Muftuoglu A, Bilgen E. Heat transfer in inclined rectangular receivers for concentrated solar radiation [ J]. International Communications in Heat and Mass Transfer, 2008, 35 (5) : 551- 556.
  • 8Kennedy C E. Review of mid- to high-temperature solar selective absorber materials [ R ]. NREL/TP-520-31257, Golden CO. National Renewable Energy Laboratory, 2002.
  • 9Trieb F, Nitsch J. Recommendations for the market introduction of solar thermal power sta- tions[J]. Renewable Energy, 1998, 14(1):17-22.
  • 10LIN Jian-zhong, LIN Pei-feng, CHEN Hua-jun. Research on the transport and deposition of nanoparticles in a rotating curved pipe [J].Physics of Tuids, 2009, 21 ( 12 ) : 1-11.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部