期刊文献+

基于核密度估计的前视红外小目标跟踪 被引量:4

Small target tracking in forward looking infrared imagery based on kernel density estimation
下载PDF
导出
摘要 针对前视红外图像中小目标较难跟踪的问题,提出了一种基于核密度估计的跟踪方法.融合灰度与局部加权灰度信息熵特征,对目标模板与候选目标区域进行核密度估计,通过均值偏移算法最小化目标候选区域的核密度分布与模板的核密度分布之间的距离来实现跟踪.跟踪过程中,由于受光照、遮挡等因素影响,目标特征可能发生渐变或突变,以Bhattacharyya系数为准则,对目标模板进行自动更新,解决了不能及时更新或过更新引起跟踪失败的问题.实验验证了所提出方法能够对前视红外小目标进行鲁棒的跟踪. To deal with difficulties inherit when tracking small targets in a forward looking infrared (FLIR) image, the authors proposed an approach based on kernel density estimation. The intensity and locally weighted intensity entropy were fused to model targets. Tracking was performed by computing the mean shift vector that minimizes the distance between the kernel distribution for the target cadidate area and the model. The target might change slowly or it can alter drastically if the illumination changes or the target is obscured by other objects during the course of tracking. A strategy was proposed to update the model based on the Bhattacharyya coefficient, thus overcoming the problem of tracking failures caused by the model being under-updated or over-updated. Experiments verified that the algorithm is robust in tracking small targets in FLIR image sequences.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2009年第7期763-767,共5页 Journal of Harbin Engineering University
基金 国防基础研究基金资助项目(B2320XX0604)
关键词 小目标跟踪 核密度估计 局部加权灰度信息熵 模板更新 small target tracking kernel density estimation local weighted intensity entropy model update
  • 相关文献

参考文献1

二级参考文献6

  • 1Denney B S,de Figuriredo R J P.Optimal point target detection using adaptive auto regressive background predictive[C]∥Proc.of SPIE,Signal and Data Processing of Small Targets,2000:46-57.
  • 2Leung H,Lo T.Chaotic radar signal processing over the sea[J].IEEE Journal of Oceanic Engineering,1993,18 (3):287-295.
  • 3Tom V T,Peli T,Leung M,et al.Morphology-based algorithm for point target detection in infrared backgrounds[C]∥Proc.of SPIE,Signal and Data Processing of Small Targets,1993:2-11.
  • 4Hilliard C.Selection of a clutter rejection algorithm for real-time target detection from an airborne platform[C]∥Proc.of SPIE,Signal and Data Proc.of Small Targets,2000:74-84.
  • 5彭嘉雄,周文琳.红外背景抑制与小目标分割检测[J].电子学报,1999,27(12):47-51. 被引量:143
  • 6叶增军,王江安,阮玉,邹勇华.海空复杂背景下红外弱点目标的检测算法[J].红外与毫米波学报,2000,19(2):121-124. 被引量:28

共引文献4

同被引文献28

  • 1陈艳琴,罗大庸.基于Kalman滤波和Mean Shift算法的人眼实时跟踪[J].模式识别与人工智能,2004,17(2):173-177. 被引量:6
  • 2程建,杨杰.一种基于均值移位的红外目标跟踪新方法[J].红外与毫米波学报,2005,24(3):231-235. 被引量:42
  • 3Tae-Wuk Bae, Fei Zhang, In-So KweorL Edge directional 2D LMS filter for infrared small target detection. Infrared Physics . Technology, 2012,55 : 137-145.
  • 4Gonzalez. Digital Image Processiong:Second Edition [M]. Bei- jing: Publishing House oi" Electronics Industry, 2003 : 435,469.
  • 5付道俊,吴坚,吴国东.基于质心提取的红外图像小目标检测[J].船舰电子工程,2009,29(12):196~198.
  • 6杨磊,杨杰.复杂背景条件下的红外小目标检测与跟踪算法研究[M].上海交通大学,2006.
  • 7方义强,樊祥,程正东,等.基于数学形态学的红外小目标跟踪研究[J].导弹与指导学报,2012,32(2):15-18.
  • 8COMANICIU D, RAMESH V, MEER P. Kernel-based object tracking [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 ( 5 ) :564 - 577.
  • 9COMANICIU D, RAMESH V, MEER P. Real-time tracking of non-rigid objects using mean shift [ C ]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hilton Head Island : IEEE, 2000 : 142 - 149.
  • 10YILMAZ A, SHAFIQUE K, SHAH M. Target tracking in airborne forward looking infrared imagery [ J ]. Image and Vision Computing,2003,21 (7) :623 - 635.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部