期刊文献+

基于BP神经网络的模塑封电子器件优化设计 被引量:1

Optimal design of plastic electronic packaging component based on BP neural network
下载PDF
导出
摘要 针对塑封SOT(小外形晶体管)器件的使用失效案例,从芯片设计角度出发,提出一种优化设计方法,该方法利用误差反向传播神经网络(BPNN),结合主成分分析(PCA)、遗传算法(GAs)及均匀设计的针对非线性系统的优化设计,设计了该塑封SOT器件的尺寸参数。结合实验和有限元模拟分析,验证该优化设计结果的有效性。结果表明,优化设计的器件各关键界面点的最大应力约减少了70~180MPa,器件的界面层裂现象得到消除,提高了器件的可靠性。 According to failure cases of plastic electronic packaging component SOT in the use, dimension parameters of plastic electronic packaging component SOT were designed with a proposed optimal design method, which combined error back-propagation neural network (BPNN), principal component analysis (PCA), genetic algorithms (GAs) and uniform design, and an optimal design for nonlinear system. The validity of optimal design result was verified by combining with experiments and FEA. The results show that the max stresses of each key interface points are is decreased about 70-180 MPa, which greatly improves the reliability of the component. Meanwhile, after improving by the optimal design, the delamination phenomenon is avoided for the device. The feasibility of proposed optimal design to plastic electronic packaging component has been verified by above.
作者 蔡苗 杨道国
出处 《电子元件与材料》 CAS CSCD 北大核心 2009年第8期71-74,共4页 Electronic Components And Materials
基金 国家自然科学基金资金资助项目(No.60666002) 广西研究生教育创新计划资助项目(No.2008105950802M402)
关键词 电子模塑封器件 优化设计 误差反向传播神经网络 plastic electronic packaging component optimal design error back-propagation neural network
  • 相关文献

参考文献2

二级参考文献17

  • 1黄瑞毅,杨少华,李坤兰,吴福根.BP神经网络在元器件非工作可靠性参数预测中的应用[J].电子产品可靠性与环境试验,2005,23(5):7-9. 被引量:8
  • 2别俊龙,孙学伟,贾松良.吸收湿气对微电子塑料封装影响的研究进展[J].力学进展,2007,37(1):35-47. 被引量:13
  • 3Yousef A A, Hany E K. Fatigue life prediction of composite materials using polynomial classifiers and recurrent neural networks [J]. Compos Struct, 2007, 77:561 --569.
  • 4Leel J A, Almond D P, Harris B. The use of neural networks for the prediction of fatigue lives of composite materials [J]. Composites: Part A, 1999, 30: 1159--1169.
  • 5Hany E K. Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial neural networks [J]. Compos Struct, 2006, 73: 1-23.
  • 6郝秀云.微电子封装用高聚物的疲劳失效分析[D].桂林:桂林电子科技大学,2004.6.
  • 7Interntational Roadmap Committee. International technology roadmap for semiconductors [EB/OL]. [2006-01-30]. http://www.itrs.net / reports. html.
  • 8Wong E H, Teo Y C, Lim T B. Moisture diffusion and vapour pressure modeling oflC packaging [J]. IEEE, 1998, (98): 1372-1378.
  • 9Kim H S, Song H G. Investigation of moisture-induced failures of stacked-die package [J]. Microelectron Reliab, 2007, (14): 1-7.
  • 10Tee T Y, Zhong Z W. Integrated vapor pressure, hygroswelling, and thermo-mechanical stress modeling of QFN package during reflow with interfacial fracture mechanics analysis [J]. Microelectron Reliab, 2004, 44(1): 105-114.

共引文献4

同被引文献34

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部