期刊文献+

结合互信息熵差测度的高斯混合模型图像分割

A Gauss Mixture Model with Difference of Mutual Information for Image Segmentation
下载PDF
导出
摘要 从分割图像与原图像的内在联系出发,提出了一种基于高斯混合模型与互信息熵差结合的分割算法———GMM-DMI算法.利用期望极值化方法确定高斯混合模型的各分量参数,以互信息熵差为模型选择准则,计算前分割图像与当前分割图像的互信息熵差,互信息熵差达到最小时即为最优解.实验结果表明,本算法所得到的目标图像的区域保持形状且定位性能好. According to the internal relations between original image and segmented image, the gauss miture model is combined with the difference of mutual information (DMI). The parameters of GMM can be obtained by using Expectation Maximization method, and in iteration process, an optimal component number will be determined by minimizing the DMI between the previous and current segmented images. The experimental results indicate that the proposed method has not only visually better segmentation effect but also better localization property.
出处 《南华大学学报(自然科学版)》 2009年第2期60-62,共3页 Journal of University of South China:Science and Technology
关键词 图像分割 高斯混合模型 互信息熵差 image segmentation GMM DMI
  • 相关文献

参考文献1

二级参考文献9

  • 1Jiang XY, Bunke H. Edge detection in range images based on scan line approximation. Computer Vision and Image Understanding,1999,73(2): 183~ 199.
  • 2Hoover A, Jean-Baptiste G, Jiang XY, Flynn PJ, Bunke H, Goldgof DB, Bowyer K, Eggert DW, Fitzgibbon A, Fisher RB. An experimental comparison of range image segmentation algorithms. IEEE Transactions on PAMI, 1996,18(7):673--689.
  • 3Hoffman R, Jain AK. Segment and classification of range images. IEEE Transactions on PAMI, 1996,9(5):608---620.
  • 4Bihnes JA. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. 1998. http://ssli.ee.washington.edu/people/bihnes/mypapers/em.ps.gz.
  • 5Redner RA, Walker HF. Mixture density, maximum likelihood and the EM algorithm. SIAM Review, 1984,26(2):195~239.
  • 6Hoover A, Powell MW. Range image segmentation comparison project. Department of Computer Science and Engineering,University of South Florida, 1996. http://marathon.csee.usf.edu/range/seg-comp/SegComp.html.
  • 7Raflery AE. Approximate Bayes factors and accounting for model uncertainty in generalizes linear model. Technical Report, 1993.http://www.stat.washington.edu/www/research/reports/1993/tr255 .ps.
  • 8Fraley C, Raftery AE. How many clusters? Which clustering method? Answers via model-based cluster analysis. Technical Report,1998. http://www.stat.washington.edu/www/research/reports/1998/tr329.ps.
  • 9Buhmann/M. Data clustering and learning. 2002. http://www-dbv.cs.uni-bonn.de,/pdf/buhmann.hobtann02.pdf.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部