期刊文献+

改进的模糊最小二乘支持向量机模型 被引量:4

Improved Fuzzy Least Squares Support Vector Machines Model
下载PDF
导出
摘要 针对最小二乘支持向量机对噪声或孤立点敏感的问题,提出一种融合先验知识的模糊最小二乘支持向量机模型。在训练过程中考虑样本的噪声分布模型,结合样本紧密度策略,自动生成相应样本的模糊隶属度。实验结果表明,该模型对噪声样本具有较好的分类精度。 Aiming at the problem that the Least Squares Support Vector Machines(LSSVM) is sensitive to noises or outliers, a LSSVM model incorporating with a prior knowledge on data is proposed. Information of noise distribution for samples is introduced in the training process. A strategy based on the sample affinity is presented to discriminate data with noises. A fuzzy membership is automatically generated and assigned to each corresponding data point in the sample set by using the strategy and the noise model. Experimental result shows that the proposed model has better classification accuracy with noise data.
作者 许亮
出处 《计算机工程》 CAS CSCD 北大核心 2009年第14期236-237,240,共3页 Computer Engineering
关键词 最小二乘支持向量机 模糊隶属度 噪声分布模型 Least Squares Support Vector Machines(LSSVM) fuzzy membership noise distribution model
  • 相关文献

参考文献6

  • 1Suykens J A K,Vandevalle J.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters,1999,9(3):293-300.
  • 2Shim J Y,Hwang C,Nau S.Robust LS-SVM Regression Using Fuzzy C-Means Clustering[J].Advances in Natural Computation,2006,1(1):157-166.
  • 3Lauer F,Bloch G.Incorporating Prior Knowledge in Support Vector Machines for Classification:A Review[J].Neurocomputing,2007,71(7):1-17.
  • 4Lin C F,Wang S D.Training Algorithms for Fuzzy Support Vector Machines with Noisy Data[J].Pattern Recognition Letters,2004,25(14):1647-1656.
  • 5张英,苏宏业,褚健.基于模糊最小二乘支持向量机的软测量建模[J].控制与决策,2005,20(6):621-624. 被引量:27
  • 6Hyun W C.Nonlinear Feature Extraction and Classification of Multivariate Process Data in Kernel Feature Space[J].Expert System With Application,2007,32 (2):534-542.

二级参考文献9

  • 1Vapnik V. Statistical learning theory[M]. New York:Wiley Springer, 1998 : 146-175.
  • 2Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J].Neural Processing Letter ,1999, 9(3):293-300.
  • 3Lin C J. Formulations of support vector machines: A note from an optimization point of view [J]. Neural Computation, 2001,13(2) : 307-317.
  • 4Zhang X G. Using class-center vectors to build support vector machines [A]. Neural Networks for Signal Processing IX-Proc of the 1999 IEEE Workshop[C].Wisconsin: IEEE Inc,1999:33-37.
  • 5Lin C F, Wang S D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13 (3):466-471.
  • 6Huang H P, Liu Y H. Fuzzy support vector machines for pattern recognition and data mining[J].Int J of Fuzzy Systems, 2002,4(3):3-12.
  • 7Tax D M J, Duin R P W. Data domain description by support vectors[A]. Proc of 8th European Symposium on Artificial Neural Networks[C]. Brussels : Facto D,1999:251-256.
  • 8徐敏,俞金寿.软测量技术[J].石油化工自动化,1998,34(2):1-3. 被引量:50
  • 9王宇红,黄德先,高东杰,金以慧.基于LS-SVM的非线性预测控制技术[J].控制与决策,2004,19(4):383-387. 被引量:70

共引文献26

同被引文献29

  • 1林印华,张春海,刘洁.基于清洗规则和主数据的数据修复算法实现[J].计算机科学,2012,39(S3):174-176. 被引量:5
  • 2代博兰,刘明远,肖威.面向智能交通的数据采集技术的研发现状[J].中国水运(下半月),2009,9(3):95-96. 被引量:5
  • 3张翔,肖小玲,徐光祐.基于最大熵估计的支持向量机概率建模[J].控制与决策,2006,21(7):767-770. 被引量:12
  • 4曾绍华,魏延.供应商评价的支持向量机模型及应用研究[J].重庆师范大学学报(自然科学版),2007,24(1):29-33. 被引量:3
  • 5Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [ J ]. Neural Processing Letters, 1999,9 (3) :293-300.
  • 6Ratsaby J. Incremental learning with sample queries [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20 ( 8 ) : 883-888.
  • 7Suykens J A K, Lukas L, Vandwealle J. Sparse least squares support vecter machines for adaptive communication chan- nel equalization [ J ]. International Journal of Applied Science and Engineering, 2005,11 ( 3 ) :51-59.
  • 8Vapnik V N.The Nature of Statistical Learning Theory[M].New York,USA:Springer-Verlag,1995.
  • 9Gonen M,Tanugur A,Alpaydin E.Multiclass Posterior Probability Support Vector Machines[J].IEEE Transactions on Neural Networks,2008,19(1):130-139.
  • 10Platt J C.Probabilistic Output for Support Vector Machine and Comparisons to Regularized Likelihood Methods[M].[S.1.] :MIT Press,1999.

引证文献4

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部