期刊文献+

基于确定性退火聚类的LSSVM短期负荷预测

Short-term Load Forecasting Based on LSSVM and Deterministic Annealing Clustering
下载PDF
导出
摘要 提出了确定性退火聚类和最小二乘支持向量机(Least Square Support Vectorma-chine,LSSVM)相结合的电力系统短期负荷预测方法。考虑影响负荷变化的各种因素构造负荷样本数据,利用确定性退火聚类算法对样本数据进行分类,得到的分类样本数据作为最小二乘支持向量机的学习样本,保证最小二乘支持向量机具有较高的预测精度。利用某电力公司2007年负荷数据和气象数据进行仿真实验,仿真结果表明该方法具有较高的预测精度。 A short-term load forecasting method based on LSSVM and deterministic annealing clustering algorithm is proposed. All kinds of factors affecting load data are considered to form load samples. Load samples are classified using deterministic annealing algo- rithm, then fed into the least square support vector machines. The load data and meteorological data of a electrical company in 2007 is utilized to test the forecasting model. The simulation result shows that the proposed method can improve the predicting accuracy.
作者 高荣 刘晓华
出处 《控制工程》 CSCD 北大核心 2009年第4期432-434,共3页 Control Engineering of China
基金 国家自然科学基金资助项目(60774016)
关键词 电力系统 短期负荷预测 最小二乘支持向量机 确定性退火聚类 power system short-term load forecasting least square support vector machine deterministic annealing
  • 相关文献

参考文献8

  • 1Liu K.Comparison of very short-term load forecasting[J].IEEE Transactions on Power Systems,1996,11(2):877-882.
  • 2El-Keib A A,Ma X,Ma H.Advancement of statistical based modeling techniques for short-term load forecasting[J].Electric Power Systems Research,1995,35(1):51-58.
  • 3Yang H T,Huang Ch M,Huang Ch L.Identification of ARMAX model for short term load forecasting an evolutionary programming approach[J].IEEE Transactions on Power Systems,1996,11(1):403-408.
  • 4Papalexapules A D,Hesterberg T C.A regression based approach to short-term load forecasting[J].IEEE Transactions on Power Systems,1990,5(4):1214-1221.
  • 5Vapnik V.Statistical learning theory[M].New York:New York Wiley,1998.
  • 6李元诚,方廷健,于尔铿.短期负荷预测的支持向量机方法研究[J].中国电机工程学报,2003,23(6):55-59. 被引量:279
  • 7吴宏晓,侯志俭.基于免疫支持向量机方法的电力系统短期负荷预测[J].电网技术,2004,28(23):47-51. 被引量:24
  • 8Rose K,Gurewitz E,Fox G.A determinisfie annealing approach to clustering[J].Pattern Recognition,1990,11(9):589-593.

二级参考文献15

  • 1Liu K. Comparison of very short-term load forecasting technique[J]. IEEE Trans. Power Systems, 1996,11(2): 877-882.
  • 2Hippert H S, Pefreira C E, Souza R C. Neural network for short-term load forecasting: A review and evaluation[J].IEEE Trans. Power System. 2001,16(2): 44-54.
  • 3Muller K R, Smola A J, Ratsch G, et al.Prediction time series with support vector machines[C].In Proc of ICANN'97., Springer LNCS 1327, Bedin,1997, 999-1004.
  • 4Papadakis S E, Theocharis J B, Kiartzis S J, et al. A novel approach to short-term load forecasting using fuzzy neural net-works[J].IEEE Trans. Power Systems, 1998,13(2):480-492.
  • 5Vapnik V, Golowich S, Smola A. Support vector method for function approximation, regression estimation, and signal processing[M].Cambridge, MA, MIT Press, 1997, 281-287.
  • 6Smola A J. Regression estimation with support vector learning machines[D]. Technische Universit"at M" unchen.1996.
  • 7Vapnik V N. The nature of statistical learning theory[M]. New York:Springer, 1995.
  • 8Mukherjee S, Osuna E, Girosi F. Nonlinear prediction of chaotic time series using support vector machines[C]. Proceedings of NNSP '97,Amelia Island,FL,1997.
  • 9Smola A J, Scholkopf B. A tutorial on support vector regression[R].NeuroCOLT Tech. Rep.TR 1998-030,Royal Holloway College,London, U.K,1998.
  • 10Shevade S K, Keerthi S S, Bhattcharyy C, et al. Improvements to SMO algorithm for SVM regression[J]. IEEE Trans. on Neural Network, 2000,11(5): 1188-1193.

共引文献290

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部