期刊文献+

光滑支持向量分类机的收敛上界研究

Upper bound of convergence for smooth support vector classifier
下载PDF
导出
摘要 Lee等人使用光滑技术,提出了光滑支持向量分类机模型(SSVM),但该分类机的收敛上界问题尚待解决。介绍了光滑支持向量分类机模型的原理,用集合论等方法证明模型SSVM的收敛性,然后得到收敛上界的计算公式。成功解决了光滑支持向量分类机的收敛上界问题。 Lee et al. used smoothing technique to propose Smooth Support Vector Machine for classification( SSVM). However, the problem still exists in upper bound of the convergence. The principle of SSVM model was introduced. Rough Set (RS) theory was used to prove the global convergence of SSVM, and then a formula for computing the upper bound of convergence was deduced. Therefore, the problem of upper bound of convergence was successfully solved for SSVM.
出处 《计算机应用》 CSCD 北大核心 2009年第8期2243-2244,2249,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60773050) 广东省科技计划资助项目(2008B060600076)
关键词 分类 支持向量机 光滑 收敛上界 classification Support Vector Machine (SVM) smoothing upper bound of convergence
  • 相关文献

参考文献6

二级参考文献19

  • 1袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 2王剑,林福宗.基于支持向量机(SVM)的数字音频水印[J].计算机研究与发展,2005,42(9):1605-1611. 被引量:12
  • 3熊金志,胡金莲,袁华强,胡天明,李广明.一类光滑支持向量机新函数的研究[J].电子学报,2007,35(2):366-370. 被引量:42
  • 4李春花,凌贺飞,卢正鼎.基于支持向量机的自适应图像水印技术[J].计算机研究与发展,2007,44(8):1399-1405. 被引量:17
  • 5C Chen, O L Mangasarian. A class of smoothing functions for nonlinear and mixed complementarity problems [ J ]. Computational Optimization and Application, 1996,5:97- 138.
  • 6C Chen,O L Mangasarian. Smoothing methods for convex inequalities and linear complementarity problems[ J]. Mathematical Programming, 1995,71:51 - 69.
  • 7O L Mangasarian.Mathematical programming in meural networks [J]ORSA Journal on Computing, 1993,5(4) :349 - 360.
  • 8Y J Lee,O L Mangasarian.SSVM:A smooth support vector machine for classification[ J]. Computational Optimization and Applications,2001,22(1):5 - 21.
  • 9Y J Lee,W F Hsieh, C M Huang. ε-SSVR:A smooth support vector machine for E-insensitive regression[ J]. IEEE Transactions on Knowledge and Data Engineering,2005,17(5):5 - 22.
  • 10J Platt. Sequential minimal optimization: A fast algorithm for training support vector machines [ A]. Advances in Kemel Methods-Support Vector Learning[ C]. Cambridge, MA: MTT Press, 1999.185 -208.

共引文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部