期刊文献+

基于特性模型与神经网络的乳腺图像肿块自动检测技术 被引量:6

Automatic Detection of the Masses in the Mammograms Using Characteristic Modeling and Neural Networks
下载PDF
导出
摘要 钼靶X线摄影是最常用的乳腺癌早期诊断手段。该文针对乳腺图像中的肿块提出了一种基于特性模型与神经网络的计算机辅助诊断技术。它首先建立两种特性模型分别描述脂肪组织和腺体组织中的肿块;然后对脂肪中的肿块采用迭代阈值法进行检测,对腺体中的肿块采用小波域黑洞检索法进行标记;接着采用一种基于Canny算子和能量场约束以及ANFIS控制的填充膨胀方法分割疑似肿块;最后使用一种MLP分类器剔除假阳性。实验结果表明,该算法在面对特性迥异的多种肿块时可取得较高的检测精度,并保证较低的假阳性率。 Mammography is a conventional early detection method for breast cancer. A novel Computer-Aided Diagnosis (CAD) method for the masses is proposed in this paper. Two characteristic models are built up to represent the masses with various backgrounds, and iterative thresholding is carried out to detect the masses in the fatty tissue; however, black-hole detection of wavelet-domain is applied to label the masses in the dense tissue. Filling dilation based on ANFIS controller, Canny detector and the energy field constraint is used to segment the suspicious masses, and MLP-based classifier is applied to suppress the false positives. The experiments validate that the proposed algorithm gets high detection precision, as well as low false positive rate.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第7期1653-1658,共6页 Journal of Electronics & Information Technology
基金 国家杰出青年基金(60788101) 国家自然科学基金(60705016 60775016) 浙江省自然科学基金(Y1080740) 浙江省科技计划重大攻关项目(2006C14026)资助课题
关键词 乳腺X线图像 计算机辅助诊断 肿块 ANFIS MLP Mammogram Computer-Aided Diagnosis (CAD) Mass Adaptive-Network-based Fuzzy Inference System(ANFIS) Multi-Layer Perceptrons(MLP)
  • 相关文献

参考文献1

二级参考文献7

  • 1CHANDRASEKHAR R, ATTIKIOUZEL Y. Automatic breast border segmentation by background modeling and subtraction [A]. IWDM 2000: 5th International Workshop on Digital Mammography [C]. Toronto,Canada: Medical Physics Publishing, 2000: 560- 565.
  • 2CHANDRASEKHAR R, ATTIKIOUZEL Y. A simple method for automatically locating the nipple on mammograms [J]. IEEE Transactions on Medical Imaging,1997, 16(5):483-494.
  • 3KWOK S M, CHANDRASEKHAR R, ATTIKIOUZELY, Automatic pectoral muscle segmentation on mammograms by straight line estimation and cliff detection [A].Proceedings of 7th Australian and New Zealand and Intelligent Information Systems Conference [C]. Perth, Australia: ARCME-UWA, 2001:67 - 72.
  • 4MASEK M, CHANDRASEKHAR R, DESILVA C J S, et al. Spatially based application of the minimum cross-entropy thresholding algorithm to segment the pectoral muscle in mammograms [A].Proceedings of 7th Australian and New Zealand Intelligent Information Systems Conference[C].Perth, Australia: ARCME-UWA, 2001; 101- 106.
  • 5XIA S R, YING J F, LU Z, etal. Development of computer-aided analysis system on mammography [A]. Proceedings of IEEE-EMBS Asia-Pacific Conference on Biomedical Engineering [C]. Hangzhou, China: IEEE-EMBS, 2000:282 - 283.
  • 6JIANG Y F, XIA S R. A new mass detect method based on fuzzy region grow in digital mammograms [A]. Proceedings of IEEE-EMBS Asia-Pacific Conference on Biomedical Engineering[C]. Hangzhou, China: IEEE-EMBS, 2000: 254-255.
  • 7夏顺仁,吕维雪.乳腺X线图像的计算机辅助诊断技术研究进展[J].国外医学(生物医学工程分册),2000,23(1):24-28. 被引量:8

共引文献4

同被引文献34

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部