期刊文献+

预处理谱随机变分原理和随机有限元法 被引量:2

Preconditioned spectral stochastic variational principle and preconditioned finite element method
下载PDF
导出
摘要 利用正交级数对材料和外荷载随机场进行离散;利用刚度矩阵在随机场均值处的逆矩阵作为预处理因子,定义一组随机子空间的新的基向量,将结构随机响应过程展开为该组随机基向量的线性表达式,首次提出了预处理谱随机变分原理,在此基础上建立了结构随机分析的预处理谱随机有限元法。该方法能够导出降阶的控制方程,因而与普通的谱随机有限元法相比计算量大大降低;而且该方法能够同时适用于小变异或大变异的随机结构的分析和计算。算例表明,预处理谱随机有限元法不仅对内存要求低,而且在梁板等结构的随机分析中具有较高精度和计算效率。 The random fields of material and external loads are discretized by means of Karhunen- Loeve series. A new basis vector is defined for the Krylov subspace, which is preconditioned by a preconditioning factor. Therefore, the stochastic process of displacements is expanded into a linear combination of the basis. The preconditioned spectral stochastic variational principle is proposed for the first time as well as the preconditioned spectral stochastic finite element method for analy- sis of stochastic structures. The presented method can achieve governing equations with reduced order, so that the EMS memory requirement is much fewer than the conventional spectral stochas- tic finite element method, which can educe governing equations with dilatation order. Examples in the paper show that the presented method is suitable for analysis of stochastic structures with ran- dom quantities with large or small variation coefficients, and yield results agreeing well with those from MCFEM.
出处 《广西大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期270-276,共7页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(50768001) 广西自然科学基金重点资助项目(桂科自0991020Z) 广西科技开发计划项目(桂科能0992028-7)
关键词 预处理谱随机有限元 随机变分原理 随机场 基向量 preconditioned spectral stochastic finite element method stochastic variational principle random field basis vector
  • 相关文献

参考文献1

  • 1J. E. Hurtado,A. H. Barbat. Monte Carlo techniques in computational stochastic mechanics[J] 1998,Archives of Computational Methods in Engineering(1):3~29

同被引文献14

  • 1黄炎生,韩大建.一种随机有限元新方法[J].华南理工大学学报(自然科学版),1995,23(1):100-105. 被引量:2
  • 2HURTADO J E, BARBAT A H. Monte carlo techniques in computational stochastic mechanics [ J]. Arch Comput Methods Engrg, 1998, 5: 3-29.
  • 3HUANG S P, MAHADEVAN S, REBBA R. Collocation-based stochastic finite element analysis for random field problems [J]. Probabilistic Engineering Mechanics, 2007, 22: 194-205.
  • 4FALSONE G, IMPOLLONIA N. A new approach for the stochastic analysis of finite element modeled structures with uncer- tain parameters[ J]. Comput Methods Appl Mech Engrg, 2002, 191 : 5 067-5 085.
  • 5GHANEM R, SPANOS P D. Spectral stochastic finite-element formulation for reliability analysis [ J ]. Journal of Engineer- ing Mechanics,1991, 117:2 351-2 372.
  • 6YAMAZAKI F, SHINOZUKA M, DASGUPTA G. Neumann expansions for stochastic Finite Element Analysis [ J]. Journal of Engineering Mechanics, 1988, 114(8) :1 335-1 354.
  • 7YANG L F, LEUNG A Y T, LI Q S. The stochastic finite segment in the analysis of the shear-lag effect on box-orders [J]. Engineering Structures, 2001, 23:1 461-1 468.
  • 8孙昌,杨绿峰.数值模拟法分析薄壁箱梁的可靠性[J].铁道科学与工程学报,2007,4(6):25-29. 被引量:3
  • 9刘颖,杨绿峰,莫远昌.基于随机响应面法的结构可靠度研究[J].广西大学学报(自然科学版),2008,33(4):366-369. 被引量:14
  • 10杨绿峰,刘萍,毛立敏,唐冲.基于随机场正交级数展开的蒙特卡洛有限元法[J].桂林工学院学报,2009,29(1):84-87. 被引量:2

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部