期刊文献+

复杂交通场景中车辆视频检测的背景提取与更新 被引量:5

Background Extraction and Updating in Complex Traffic Scene
原文传递
导出
摘要 建立了一种适用于复杂交通场景的多层次背景模型,采用随机差影法来获取背景的候选像素,利用空间统计与时间统计的方法确定背景及其可信度。结合目标跟踪结果以区域为单位进行背景更新并排除浅阴影干扰,能在目标出现运动状态变化时快速地恢复背景,并且能够检测出场景中的部分静止目标。实验表明,本算法能及时恢复真实背景,提高了目标检测的准确性。 In this paper, a multilayer background model adapted to complex traffic scene is established. A random image subtraction method is adopted to obtain candidate background pixels. A method integrated with temporal and spatial statistics is used to build the background and the credibility of every pixel. The updating is implemented with fedback of object tracking results and shadows excluding, which contributes in fast background restoring when objects moving status change, and detecting temporary static objects in the scene. Finally, Experiments prove that the algorithm presented in this paper is reliable in restoring real background timely and the veracity of object detection is improved.
作者 雷波 李清泉
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2009年第8期906-909,共4页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金资助项目(40721001) 国家教育部新世纪优秀人才计划资助项目(NCET050625)
关键词 交通信息 差影法 背景提取 目标检测 traffic information image subtraction background extraction object detection
  • 相关文献

参考文献8

  • 1明英.单目智能视觉监视应用中小运动目标的检测[J].武汉大学学报(信息科学版),2004,29(2):165-168. 被引量:1
  • 2王晓卫,宁固.一种改进的基于光流的运动目标的检测算法[J].武汉大学学报(信息科学版),2003,28(3):351-353. 被引量:27
  • 3Xie Lei,Zhu Guangxi,Tang Miao.Vehicles Tracking Based on Corner Feature in Video-based ITS[].Theth International Conference on ITS Telecommunica-tions Proceedings.2006
  • 4Lipton A,Fujiyoshi H,Patil R.Moving target classification and tracking from real-time video[].Proceedings of IEEE Workshop on Applications of Computer Vision.1998
  • 5Oliver NM,Rosario B,Pentland AP.A Bayesian computer vision system for modeling human interactions[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2000
  • 6R.Cutler,L.Davis.View-based detection and analysis of Periodic Motion[].International Conference Pattern Recognition.1998
  • 7Elgammal,A.,Harwood,D.,Davis,L.S.Non-Parametric Model for Background Subtraction[].European Conf Computer Vision.2000
  • 8Grimson W E L,and Stauffer C.Adaptive Background Mixture Models for Real-time Tracking[].IEEE Conference on Computer Vision and Pattern Recognition.1999

二级参考文献2

共引文献26

同被引文献45

  • 1王成儒,顾广华.一种采用背景统计技术的视频对象分割算法[J].光电工程,2004,31(8):57-60. 被引量:12
  • 2邓自立,李春波.自校正信息融合Kalman平滑器[J].控制理论与应用,2007,24(2):236-242. 被引量:4
  • 3Nikos P,Rachid D.Active contours and level sets for the detection and tracking of moving objects[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(3):266-280.
  • 4Paragios N,Tziritas G.Adaptive detection and localization of moving objects in image sequences[J].Signal Processing:Image Comm.,1999(14):277-296.
  • 5Stauffer C,Grimson W E L.Adaptive background mixture models for real-time tracking[C].In Proc IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1999:246-253.
  • 6Haritaogu I,Harwood D,Davis L.Real-time surveillance of people and their activities[J].IEEE Transaction on Pattern Analysis and Machine Intelligence,2000,22(8):809-830.
  • 7Xu Yanwu, Cao Xianbin, Qiao H. Pedestrian De- tection with I.ocal Feature Assistant[C]. IEEE In- ternational Conference on Control and Automation, Guangzhou, China, 2007.
  • 8Zhang Zui, Gunes H, Piccardi M. Head Detection for Video Surveillance Based on Categorical Hair and Skin Colour Models[C]. IEEE International Conference on Image Processing, Cairo, Egypt, 2009.
  • 9Li Min, Zhang Zhaoxiang, Huang Kaiqi, et al. Es timating the Number of People in Crowded Scenes by MID Based Foreground Segmentation and Head- shoulder Deteetion[C]. International Conference on Pattern Recognition, Piseataway ,N J, USA,2008.
  • 10Ma Wenhua, Huang l.ei, I.iu Changping. Advanced Lo- cal Binary Pattern Descriptors for Crowd Estimation[C]. Pacific-Asia Workshop on Computational Intelligence and Industrial Application, Wuhan, China,2008.

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部