期刊文献+

环F_2+uF_2+…+u^kF_2上的循环码和(1+u^k)循环码 被引量:3

(1+u^k) constacyclic codes over F_2+uF_2+…+u^kF_2
下载PDF
导出
摘要 文章定义了环F2+uF2+…+ukF2到F2+uF2上的一个新的映射k,证明了该环上的(1+uk)循环码在新映射下的像是F2+uF2上的准(1+u)循环码,结合F2+uF2上熟知的Gray映射φ,得到(F2+uF2+…+ukF2)n到F22kn上的一个新的Gray映射Φ=φΦk,证明了该环上的(1+uk)循环码在新Gray映射下的像是F2上长为2kn,指数为2k-1的准循环码。 A new map Φk from F2+uF2+…+ukF2 to F2+uF2 is defined in this paper. It is shown that the image of a (1+uk) constacyclic code over the ring is a quasi-(1+u) cyclic code over F2+uF2. With the familiar Gray map φ over ,F2+uF2 ,a new Gray map Φ=φΦk from (F2+uF2+…+ukF2)n to F2^2kn is given. It is also proved that the Gray image of a (1-t-uk) constacyclic code over the ring is a binary qua- si-cyclic code with the index 2k-1 and the length 2kn.
作者 王玉
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第7期1117-1120,共4页 Journal of Hefei University of Technology:Natural Science
关键词 常循环码 GRAY映射 准循环码 线性码 constacyclic code Gray map quasi-cyclic code linear code
  • 相关文献

参考文献8

  • 1Mac Will mas F,Sloane N.The theory of error-correctingcodes[]..1977
  • 2Ling S,Blackford J T.Zpk+1-linear codes[].IEEE Transactions on Information Theory.2002
  • 3Hammons AR,Kumar PV,Calderbank AR,et al.The Z4-linearity of Kerdock, Preparata, Goethals and related codes[].IEEE Transactions on Information Theory.1994
  • 4Carlet C.Z 2 k -linear codes[].IEEE Transactions on Information Theory.1998
  • 5Bonnecaze A,Udaya P.Cyclic codes and self-dual codes over F2+uF2[].IEEE Transactions on Information Theory.1999
  • 6Wolfmann J.Negacyclic and cyclic codes overZ4[].IEEE Transactions on Information Theory.1999
  • 7TAPIA-RECILLAS H,VEGAG.Some constacyclic codes overZ2kand binary quasi-cyclic codes[].Discrete Applied Mathematics.2003
  • 8Qian J F,Zhang L N,Zhu S X.[].Journal of Applied Mathematics.2006

同被引文献20

  • 1朱士信,吴波.环F_p+uF_p+…+u^kF_p上的线性码和常循环码的Gray像[J].合肥工业大学学报(自然科学版),2006,29(8):1049-1052. 被引量:4
  • 2余海峰,朱士信.环F_2+uF_2上线性码及其对偶码的二元象[J].电子与信息学报,2006,28(11):2121-2123. 被引量:7
  • 3李平,朱士信.环F2+uF2上长为2^e的循环码[J].电子与信息学报,2007,29(5):1124-1126. 被引量:16
  • 4Bonneeaze A,Udaya P. Cyclic codes and self-dual codes over F2q-uF2[J]. IEEE Trans Inform Theory, 1999, 45 (4) 1250--1255.
  • 5Zhu Shixin, Wang Yu, Shi Minjia. Some results on cyclic codes over F2 +vF2 [J]]. IEEE Trans Inform Theory, 2010, 56 (4) : 1680-- 1684.
  • 6Hammons A R, Kumar P V. The Z4-1inearity of Kerdock, Preparata, Goethals, and related codes [J]. IEEE Trans Inform Theory, 1994,40(2) : 301-- 319.
  • 7Aydin N, Ray-Chaudhuri D K. Quasi-cyclic codes over Z4 and some new binary codes[J]. IEEE Trans Inform Theo- ry,2002,48(7) :2065--2069.
  • 8Boucher D,Geiselmann W, Ulmer F. Skew cyclic codes[J]. Applied Algebra in Engineering, Communication and Computing, 2007,18(4) : 379--389.
  • 9Boucher D, Ulmer F. Coding with skew polynomial rings [J]. Journal of Symbolic Computation, 2009, 44 ( 12 ): 1664--1656.
  • 10Ahualruh T,Ghrayeh A, Siap I, et al. On the construction of skew quasi-cyclic codes[J]. IEEE Trans Inform Theory, 2010,56(5):2081--2090.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部