期刊文献+

二维翼型微吸吹气减阻控制新技术数值研究 被引量:8

Numerical Investigation of Drag-reduction Control by Micro-suction-blowing on Airfoil
原文传递
导出
摘要 结合抽吸气转捩控制和微吹气湍流减阻控制的特点,探索了一种新的吸吹气减阻控制技术。使用Fluent求解器,并利用用户自定义函数(UDF)二次开发对其自带的Wilcox转捩模式进行了修正。在此基础上,数值研究了吸吹气控制对翼型阻力性能的影响。结果表明:在一定的吸气量范围内,吸气、吸吹气控制都能使翼型总阻力减小,且在同一雷诺数下,吸气控制能使翼型总阻力减小约3%,而吸吹气联合控制使翼型总阻力减小约16%。由此可见,吸吹气控制技术是一种行之有效的减阻控制技术。 Combining the characteristics of suction-transition control and micro-blowing turbulence-drag-reduction technology, a novel suction-blowing-control technique is put forward to reduce airfoil drag. By using the computational fluid dynamics (CFD) code of Fluent, the Wilcox transition mode is modified by a user-defined function (UDF) and incorporated into the CFD code. Based on the above modifications, the effect of suction- blowing control on the airfoil drag performance is numerically studied. The results show that when the suction flow rate are in a certain range, suction and suction-blowing control can both reduce the total drag of an airfoil. At the same Reynolds number, the leading-edge suction without blowing reduces the total drag below the airfoil by up to 3%, while the suction-blowing control results in a drag reduction by up to 16%. Therefore, the suction-blowing control technique is an effective way for drag reduction control.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第7期1219-1226,共8页 Acta Aeronautica et Astronautica Sinica
基金 国防预研项目(61901010201) 航空支撑基金(08ZA51003)
关键词 翼型 层流流动 转捩 湍流减阻 吸吹气控制 airfoils laminar flow transition turbulence-drag reduction suction-blowing control
  • 相关文献

参考文献3

二级参考文献7

  • 1LIU Z,ZHAO W,XIONG G,LIU C.Direct numerical simulation of flow transition in high-speed boundary layers around airfoils[R].AIAA-97-0753,1997.
  • 2MENTER F R.Zonal two equation k-ω turbulence models for aerodynamic flows[R].AIAA-93-2906,1993.
  • 3WARREN W S,HASSAN H A.An alternative to the en method for determining onset of transition[R].AIAA-97-0825,1997.
  • 4JIANG H,MOORE J G,MOORE J.Low Reynolds number one-equation turbulence modelling for prediction of transitional flows over a flat plate[R].AIAA-90-0242,1990.
  • 5BIRCH N T,HO Y K,STOW P.Calculation of the T3 transition test cases[A].In:Numerical simulation of unsteady flows and transition to turbulence.Proceedings of ERCOFTAC held at EPFL[C].Cambridge University Press,1990,pp.355-367.
  • 6JOHANSEN J,SORENSEN J N.Prediction of laminar/turbulent transition in airfoil flow[R].AIAA-98-0702,1998.
  • 7徐星仲,朱斌,蒋洪德.一种新的k方程转捩湍流模型[J].工程热物理学报,1998,19(1):34-39. 被引量:5

共引文献18

同被引文献84

  • 1刘学强,伍贻兆,程克明.用基于M-SST模型的DES数值模拟喷流流场[J].力学学报,2004,36(4):401-406. 被引量:17
  • 2张瑜,李静美,秦俭.跨声速激波边界层相互作用的被动控制[J].力学学报,1995,27(5):523-535. 被引量:1
  • 3刘刚,刘伟,牟斌,肖中云.涡流发生器数值计算方法研究[J].空气动力学学报,2007,25(2):241-244. 被引量:38
  • 4Kays W M, Crawford M E, Weigand B .赵镇南译.对流传热与传质[M].北京:高等教育出版,2007.
  • 5Joslin R D. Aircraft laminar flow control[J]. Annual Review of Fluid Mechanics,1998,30: 1 -29.
  • 6Saric W. Laminar flow control with suction:theory and experiment[R]. AGARD Report 723,1985.
  • 7Reshotko E. Drag reduction by cooling in hydrogen-fueled aircraft[J]. Journal of Aircraft, 1979,16(9):584- 590.
  • 8Carpenter P W, Lucey A D. Progress on the use of compliant walls for laminar flow control[J]. Journal of Aircraft, 2001,38(3) :504 -512.
  • 9Carpenter P W, Morris P J. The effect of anisotropic wall compliance on boundary layer stability and transition [J].Journal of Fluid Mechanics, 1990,218 : 171-223.
  • 10Joslin R D. Overview of laminar flow control[R]. NASA TP-208705,1998.

引证文献8

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部