期刊文献+

多源冲突证据的智能融合算法研究 被引量:2

Intelligent fusion algorithm of multi-source conflicting evidences
下载PDF
导出
摘要 与Dempster-Shafter理论(DST)相比,Dezert-Smarandache理论(DSmT)通过保留证据冲突项作为数据融合的焦元,从而可以很好地解决在证据发生高冲突情况下的信息融合问题。但是因为DSmT算法增加了矛盾焦元,致使推理过程中的计算量加大,更容易产生焦元爆炸的问题。针对上述问题,提出一种结合两者优点的DST-DSmT智能算法。该算法以证据之间的冲突质量作为判断依据,当冲突质量较小时采用DST算法,反之则采用DSmT算法,以期在保证融合效果的情况下,减小计算量。以P2-DX机器人为实验平台,以具体算例验证了方法的正确性和有效性。 Compared with DST,DSmT can keep the conflict of evidences as a focus element in data fusion in order to resolve the difficulty in the high conflict.But the DSmT's computation will oversize more easily because more focus elements are additional in DSmT rule.And the fusion result is worse than DST's when the low conflict situation is occurred.Aiming at it,this paper proposes one kind of intelligent algorithms on basis of DST and DSmT,combining their advantages.The algorithm uses conflict mass as a judgment in conflict evidences.DST fusion rule is adopted when conflict mass is lower.And DSmT fusion rule is adopted while opposition.h reduces computation with same fusion quantity.At last,Pioneer Ⅱ mobile robot is used and the correctness and validity of the developed method are verified.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第22期18-20,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.60675028~~
关键词 Dempster-Shafter理论 Dezert—Smarandache理论 冲突质量 信息融合 Dempster-Shafter Theory(DST) Dezert-Smarandache Theory(DSmT) conflict mass information fusion
  • 相关文献

参考文献6

  • 1Dezert J,Smarandache F.On the generation of hyper-power sets for the DSmT[].Proceedings of theth Int Conf on Fusion.2003
  • 2Yao Y Y.A comparative study of formal concept analysis and rough set theory in data analysis[].Lecture Notes in Artificial Intelligence.2004
  • 3Dezert J.Foundations for a new theory of plausible and paradoxical reasoning[].Information and Security.2002
  • 4Shafer,Glenn.A Mathematical Theory of Evidence[]..1976
  • 5Smarandache F,Dezert J.Advances and Applications of DSmT for Information Fusion[]..2004
  • 6Advances and Applications of DSmT for Information Fusion. http://www.gallup.unm.edu/ ?smarandache/DSmT-book2.pdf . 2006

同被引文献29

  • 1杨云志,黄成芳.战斗识别与网络战述评[J].电讯技术,2004,44(3):1-4. 被引量:3
  • 2李琨.伊拉克战争后外军战斗识别系统的发展趋势[J].电讯技术,2004,44(5):7-13. 被引量:4
  • 3尹慧琳,王磊.D-S证据推理改进方法综述[J].计算机工程与应用,2005,41(27):22-24. 被引量:26
  • 4侯俊,苗壮,潘泉.DST与DSmT自适应融合算法[J].微电子学与计算机,2006,23(10):150-152. 被引量:7
  • 5韩雁飞.目标识别的D—S融合算法[J].现代防御技术,2001,29(4):46-50.
  • 6Koks D, Challa S. An Introduction to Bayesian and Dempster- Shafer Data Fusion[ R]. [ S. 1. ] : Defense Science and Technology Organization, 2003.
  • 7Yager R. On the Dempster Shafer Framework and New Combination Rules [ J ]. Information Sciences, 1987, 41 (2) : 93 - 137.
  • 8Murphy K. Combining of Belief Functions when Evidence Conflicts[ J ]. Decision Support Systems,2000,29(1) : 1 - 9.
  • 9Dezert J. Foundations for a New Theory of Plausible and Paradoxical Reasoning[J]. Information and Security Journal, 2002, 12(1): 26-30.
  • 10Smarandache F. Advances and Applications of DSmT for Informarion Fusion[M]. [S.l.]:America Research Press,2004.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部