期刊文献+

病态嗓音特征的小波变换提取及识别研究 被引量:4

Research of extracting of pathological voice's characteristics and recognition based on wavelet transformation and Gaussian mixture model
下载PDF
导出
摘要 通过分析嗓音的发音机理、病态嗓音与正常嗓音在频域的表现差异,利用小波变换对信号进行分解,突出病态嗓音的特点,提出了基于多尺度分析的小波降噪、分解的熵系数(Entropy Coefficient based on De-noise,Decomposition of Multi-scale Analysis,ECDDMA)作为识别的特征矢量集。并对比分析了语音识别中经典特征参数Mel倒谱系数(MFCC),分别运用这两种特征参数对242例正常嗓音和234例病态嗓音运用高斯混合模型(GMM)进行了识别。结果显示:ECDDMA系数较传统的模拟人耳听觉非线性特性的MFCC及其动态特征能更准确地表征正常与病态嗓音之间的差异,有利于同时提高病态和正常嗓音的识别率。 Considering the voice pronunciation mechanism,the different performances of the abnormal voice and the normal voice in the field of frequency,the paper proposes a new method for extracting characteristics that is Entropy Coefficient based on Denoise,Decomposition of Multi-scale Analysis (ECDDMA) using the wavelet decomposition to find the pathological voice's characteristics,and comparative analysis of the effective speech characteristics MFCC.242 normal voices samples and 234 abnormal samples are recognized with MFCC and the new extracted characteristics ECDDMA based on Gaussian Mixture Model (GMM).The result indicates that,the parameters of ECDDMA are more advantageous to the normal and abnormal voice recognition than the traditional MFCC and the dynamic characteristic which mimic the human ears non-linear characteristic with frequency,and improves the abnormal and normal voice's recognition result.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第22期194-196,205,共4页 Computer Engineering and Applications
基金 广西自然科学基金No.0448035~~
关键词 高斯混合模型(GMM) 病态嗓音 Mel倒谱系数(MFCC) 小波变换 Gaussian Mixture Model(GMM) pathological voice Mel Frequency Cepstrum Coefficient(MFCC) wavelet transformation
  • 相关文献

参考文献8

二级参考文献59

共引文献72

同被引文献31

  • 1韦岗,陆以勤,欧阳景正.混沌、分形理论与语音信号处理[J].电子学报,1996,24(1):34-39. 被引量:33
  • 2毛大伟,曹华,木拉提.哈米提,童勤业.基于美尔倒谱系数和复杂性的说话人识别[J].生物医学工程学杂志,2006,23(4):882-886. 被引量:2
  • 3Thompson C, Mulpur A, Mehta V.Trandition to chaos in acoustically driven flow(acoustic streaming)[J].Acoust Soc Am, 1991,90:2097-2103.
  • 4MARKAKI M, STYLIANOU Y. Voice pathology detectionand discrimination based on modulation spectral features [J].IEEE Trans Audio Speech Language Process, 2011, 19(7):1938-1948.
  • 5OROZCO J R, VARGAS J F,ALONSO J B, et al. Voice pa-thology detection in continuous speech using nonlinear dynam-ics [CJ// The 11th International Conference on InformationSciences, Signal Processing and their Application. Montreal:2012: 1030-1033.
  • 6GAOJ,YU Y, HU W. Recognition of pathological voicesbased on fractal theory using Gaussian mixture model [C]//The 2010 International Conference on Information, Electronicand Computer Science. Guilin>China: 2010: 1668-1671.
  • 7HARTL D M, HANS S, VAISSIERE J,et al. Objectivevoice quality analysis before and after onset of unilateral vocalfold paralysis [J]. J Voice, 2010,15(3) : 351-361.
  • 8TING H N,CHIA S Y, KIM K S,et al. Vocal fundamentalfrequency and perturbation measurements of vowels by nor-mal malaysian Chinese Adults [J]. J Voice,2011,25(6) :e311-e317.
  • 9KILIC M A, OGVT F, DURSUN G, et al. The effects ofvowels on voice pertur-bation measures [J]. J Voice, 2004,18(3): 318-324.
  • 10RICHMAN J S, MOORMAN J R. Physiological time-seriesanalysis using approximate entropy and sample entropy [J].Am J Physiol Heart Circ Physiol,2000,278(6): H2039-H2049.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部