期刊文献+

隐结构模型在慢性胃炎辨证中的应用探索——基于EM算法的因子分析方法 被引量:2

Explore the Application of Latent Structure in Chronic Gastritis --Based on EM Algorithm and Factor Analysis
下载PDF
导出
摘要 名老中医在长年的临床实践中积累了大量的宝贵经验,而这些经验都隐含在众多的临床病历中,机器学习是挖掘出这些隐含经验非常有效的工具,因此利用机器学习技术挖掘出隐含在大量病历资料中的临床经验,对于名老中医经验传承具有非常重要的价值。隐结构模型是张连文教授提出的一种模型,它能够较好地符合中医辨证理论。本文在其方法上进行了一定的简化和改进,并应用于慢性胃炎辨证。主要是采用基于EM(expectation maximum,最大期望)算法的因子分析方法处理病案数据,从而得到慢性胃炎辨证的隐结构,提高了学习速度和模型的准确性。 Famous herbalist doctors accumulate a lot of precious experience during long-period clinical diagnosis. Normally, this kind of experience is hidden in a great deal of clinical medical records. The machine learning technique is a very effective tool to mine such experience. And mining clinical experience hidden in medical records by machine learning technique is of the important value for inheriting experience from famous herbalist doctors. Latent structure model was proposed by Professor Zhang Lianwen, which accords with the syndrome differentiation of traditional Chinese medicine (TCM). In this paper, the latent structure model was simplified and improved, and applied to the syndrome differentiation of chronic gastritis. Factor analysis method based on the EM algorithm was adopted to analyze the data for the medical records, accordingly the latent structure of syndrome differentiation of the chronic gastritis was obtained, which improved the learning speed and accuracy of model.
出处 《北京生物医学工程》 2009年第3期259-262,267,共5页 Beijing Biomedical Engineering
基金 国家“十一五”科技支撑计划(2007BA110806)资助
关键词 因子分析 EM算法 隐结构模型 机器学习 慢性胃炎 中医辨证 factor analysis EM algorithm latent structure model machine learning chronic gastritis syndrome differentiation of TCM
  • 相关文献

同被引文献45

  • 1张连文,袁世宏.隐结构模型与中医辨证研究(Ⅰ)——隐结构法的基本思想及隐结构分析工具[J].北京中医药大学学报,2006,29(6):365-369. 被引量:96
  • 2王阶,李海霞,王燚,张连文,姚魁武.基于隐结构模型的血瘀证症状体征研究[J].世界科学技术-中医药现代化,2006,8(6):23-26. 被引量:7
  • 3袁世宏,王天芳,张连文.隐类分析在疾病诊断标准研究中的应用进展,全国第十二次中医诊断学术年会论文集[C].中华中医药学会,2011:372-379.
  • 4WASMUSA,KINDELP,MATTUSSEKS,et al.Activity and severity of rheumatoid arthritis in Hannover/FRG and in one regional referral center[J].Scandinavian Journal of Rheumatology,1989,79(7):33-44.
  • 5EATON W.W.,DRYMANA.,SORENSON A,et al.DSM-ⅢMajor depressive disorder in the community:A Latent class analysis of data from the NIMH epidemiologic catchment area programme[J].British Journal of Psychiatry,1989,155:48-54.
  • 6VICTOR PERALTA,MANUEL J CUESTA.The Nosology Psychotic Disorders:A Comparison Among Competing Classification Systems[J].Schizophrenia Bulletin,2003,29(3):413.
  • 7WHITE P D,THOMAS J M,SULLIVAN P E,et al.The Nosology of Sub-acute and Chronic Fatigue Syndromes that Follow Infectious Mononucleosis[J].Psychological Medicine,2004,34:499-507.
  • 8Zhang N.L.,Kocka,T.,Efficient Learning of Hierarchical Latent Class Models,in Proc.of the 16th IEEE International Conference on Tools with Artificial Intelligence(ICTAI-2004)[M].Boca Raton,Florida,2004.
  • 9Zhang N.L.,Hierarchical latent class models for cluster analysis[M].AAAI-02,2002:230-237.
  • 10Zhang N.L.,Hierarchical latent class models for cluster analysis[J].Journal of Machine Learning Research,2004,5(6):697-723.

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部