摘要
A novel process for separation of red (Y2O3:Eu^3+), blue(BaMgAl10O17:Eu^2+) and green (CeMgAl10O17:Tb^3) rare earth fluorescent powders was proposed. At first, the blue powder can be extracted selectively from an aqueous solution using a chelating collector 2-thenoyltrifluoroacetone (TTA) dissolved in heptane at alkaline pH condition, then, chloroform was used for extracting the green powder into organic phase. The red phosphor remains in aqueous phase with potassium sodium tartrate depressant (PST). Therefore, three phosphors can be separated successfully from their artificial mixtures by liquid/liquid extraction, and grades and recovery of separated products reach respectively as follows: red is 96.9% and 95.2%, blue is 82.7% and 98.8%, green is 94.6% and 82.6%.
A novel process for separation of red (Y2O3:Eu^3+), blue(BaMgAl10O17:Eu^2+) and green (CeMgAl10O17:Tb^3) rare earth fluorescent powders was proposed. At first, the blue powder can be extracted selectively from an aqueous solution using a chelating collector 2-thenoyltrifluoroacetone (TTA) dissolved in heptane at alkaline pH condition, then, chloroform was used for extracting the green powder into organic phase. The red phosphor remains in aqueous phase with potassium sodium tartrate depressant (PST). Therefore, three phosphors can be separated successfully from their artificial mixtures by liquid/liquid extraction, and grades and recovery of separated products reach respectively as follows: red is 96.9% and 95.2%, blue is 82.7% and 98.8%, green is 94.6% and 82.6%.
基金
Funded by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (ROCS, SEM [2005] No. 383)