期刊文献+

桥梁移动荷载识别及其PCGM预优矩阵选取

Effect of preconditioned matrix on PCGM used for identification of dynamic axle loads on bridge
下载PDF
导出
摘要 基于时域法(TDM)求解思路,结合桥梁移动荷载特点,采用预处理共轭梯度法(PCGM)由梁的弯矩响应、加速度响应及其响应组合来识别桥梁移动荷载,重点比较在方程组不适定以及测量响应受噪声影响情况下不同预优矩阵对识别精度的影响,从而得到可用于移动荷载识别的最优预优矩阵.仿真结果表明,在绝大多数工况下,预处理共轭梯度法均能精确识别桥梁移动荷载,但不同预优矩阵对测量噪声及识别方程的不适定性有不同的抵抗能力,且对预处理共轭梯度法的收敛速度、识别精度也存在不同影响;合理选取预优矩阵能够有效提高桥梁移动荷载识别预处理共轭梯度法的精度和效率. According to characteristics of moving dynamic loads on bridges and tracking the time domain method (TDM), the moving dynamic axle loads were identified from bridge bending responses, acceleration responses or their combination based on a preconditioned conjugate gradient method (PCGM). It aimed at obtaining the most accurate preconditioned matrix by comparing effect of preconditioned matrixes on identification accuracy. Simulation results showed that the PCGM could accurately identify the dynamic axle loads on bridges in most cases. However, there was different identification accuracy and immunity to measured noise and to the ill-posed problems of the system equation if different preconditioned matrixes were used. Meanwhile, choosing proper preconditioned matrix could effectively improve both of identification accuracy and efficiency of the PCGM.
作者 陈震 余岭
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第7期1293-1296,1306,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(50378009) 教育部科学技术研究重点资助项目(208172) 暨南大学引进优秀人才科研启动基金资助项目(51207052)
关键词 预优矩阵 移动荷载识别 不适定性 时域法 预处理共轭梯度法 preconditioned matrix moving force identification ill-posed problem time domain method(TDM) preconditioned conjugate gradient method (PCGM)
  • 相关文献

参考文献3

二级参考文献14

  • 1Golub G H, Van Loan C F. Matrix computations 3rd edition[M]. Boltimore and London: The Johns Hopkins University Press, 1996.
  • 2林成森.数值计算方法[M].北京:科学出版社,1998..
  • 3Fletcher R,Reeves C.Function minimization by conjugate gradients[J].Comput J,1963,7:163-168.
  • 4Polak E,Ribiere G.Non sur la convergence de directions conjugates[J].Rev.Francaise Informat Recherche opertionelle,3e Annee,1969,16:35-43.
  • 5Polyak B T.The conjugate gradient method in extreme problems[J].USSR comp Math and Math.Phys,1969,9:94-112.
  • 6Hestenes M R,Stiefel E L.Methods of conjugate gradients for solving linear systems[J].J Res Nat Bur standards Sect.1952,5(49):409-436.
  • 7Fletcher R.Practical methods of optimization[M].Wiley-Interscience,NY,1987(2nd):63-76.
  • 8戴虹 袁亚湘.非线性共轭梯度法[M].上海:上海科学技术出版社,2001.67-82.
  • 9Al-Baali M.Descent and global convergence of the Fletcher-Reeves method with inexact line searches[J].IMA Journal of Numerical Analysis,1985,5(1):121-124.
  • 10Touati-Ahmed D,Storey C.Globally convergent hybrid conjugate gradient methods[J].Journal of Optimization Theory and Applications,1990,64(2):379-397.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部