期刊文献+

Spin-Orbit Splitting in Semiconductor Quantum Dots with a Two-Dimensional Ring Model

Spin-Orbit Splitting in Semiconductor Quantum Dots with a Two-Dimensional Ring Model
下载PDF
导出
摘要 We present a theoretical study of the energy levels with two-dimensional ring confining potential in the presence of the Rashba spin-orbit interaction. The features of some low-lying states in various strengths of the Rashba spin-orbit interaction are investigated. The Rashba spin-orbit splitting can a/so be influenced by the width of the potential barrier. The computed results show that the spin-polarized electronic states can be more easily achieved in a weakly confined dot when the confinement strength for the Rashba spin-orbit interaction is larger than a critical value. We present a theoretical study of the energy levels with two-dimensional ring confining potential in the presence of the Rashba spin-orbit interaction. The features of some low-lying states in various strengths of the Rashba spin-orbit interaction are investigated. The Rashba spin-orbit splitting can a/so be influenced by the width of the potential barrier. The computed results show that the spin-polarized electronic states can be more easily achieved in a weakly confined dot when the confinement strength for the Rashba spin-orbit interaction is larger than a critical value.
作者 冯俊生 刘征
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2009年第8期24-27,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 10704080 and 60877067, the National Basic Research Program of China under Grant No 2006CB921701-6 and the Program of STCSM under Grant No 08dj1400303.
关键词 sea surface nonliear interaction numerical method sea surface, nonliear interaction, numerical method
  • 相关文献

参考文献17

  • 1Zutic I et al 2004 Rev. Mod. Phys. 76 323.
  • 2Hirsch J E 1999 Phys. Rev. Lett. 83 1834.
  • 3Rashba E I et al 2003 Phys. Rev. Left. 91 126405.
  • 4Murakami Nagaosa S Net al 2003 Science 301 1348.
  • 5Sinova Jet al 2004 Phys. Rev. Left. 92 126603.
  • 6Nikolic B K et al 2005 Phys. Rev. B 72 075361.
  • 7Dresselhaus G 1955 Phys. Rev. 100 580.
  • 8Li S Set al 2003 Phys. Rev. B 68 245306.
  • 9Rashba E I 1960 Soy. Phys. Solid State. 2 1109.
  • 10Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部