摘要
Carbon nanotubes (CNTs) are potential strain sensors due to their excellent mechanical and spectral properties. A new theoretical model of a CNT strain sensor is obtained by applying the polarized Raman properties of CNTs, which calculates the synthetic contributions of Raman spectra from the CNTs in random directions. By using this theoretical model, the analytic relationship between planar strain components and the Raman shift increment of uniformly dispersed CNTs is obtained, which is applicable for accurately characterizing the strain in random directions on the surface of a measured microsystem.
Carbon nanotubes (CNTs) are potential strain sensors due to their excellent mechanical and spectral properties. A new theoretical model of a CNT strain sensor is obtained by applying the polarized Raman properties of CNTs, which calculates the synthetic contributions of Raman spectra from the CNTs in random directions. By using this theoretical model, the analytic relationship between planar strain components and the Raman shift increment of uniformly dispersed CNTs is obtained, which is applicable for accurately characterizing the strain in random directions on the surface of a measured microsystem.
基金
Supported by the National Natural Science Foundation of China under Grant Nos 10732080 and 10502014.