摘要
The geometries and electronic properties of Fe(MgO)n are systematically investigated by the density functional theory. The results show that the doped Fe atom is prone to bond with the O atom, and Fe almost does not disturb the frame of (MgO)n. The second-order energy difference, the fragmentation energies and the electron amnities show that Fe(MgO)4 and Fe(MgO)6 possess relatively higher stabilities. The HOMO-LUMO gaps of Fe(MgO)n decrease obviously as compared with (MgO)n. Almost equal unpaired electrons of the 3d state of the Fe atom in Fe(MgO)n result in a nearly equal magnetic moment of Fe(MgO)n.
The geometries and electronic properties of Fe(MgO)n are systematically investigated by the density functional theory. The results show that the doped Fe atom is prone to bond with the O atom, and Fe almost does not disturb the frame of (MgO)n. The second-order energy difference, the fragmentation energies and the electron amnities show that Fe(MgO)4 and Fe(MgO)6 possess relatively higher stabilities. The HOMO-LUMO gaps of Fe(MgO)n decrease obviously as compared with (MgO)n. Almost equal unpaired electrons of the 3d state of the Fe atom in Fe(MgO)n result in a nearly equal magnetic moment of Fe(MgO)n.