摘要
通过在缓增广义函数空间上重新定义二次函数方程的Ulam型稳定性,利用广义函数正则化方法,证明了二次函数方程Hyers-Ulam-Rassias型函数方程的稳定性,并给出了缓增广义函数当满足Ulam型二次函数方程不等式时与二次函数的接近程度.
We reformulated the Ulam' s stability of quadratic functional equation in the space of tempered distributions and made use of regularization method to prove the Hyers-Ulam-Rassias stability of quadratic functional equation in the space of tempered distributions, giving the degree of approximation between quadratic function and the tempered distribution which satisfies Ulam' s quadratic functional inequality.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2009年第4期691-694,共4页
Journal of Jilin University:Science Edition
基金
教育部回国留学人员资助项目基金(批准号:教外司留[2008]890号)
关键词
正则化
广义函数
二次函数方程
稳定性
regularization
distributions
quadratic functional equation
stability